Model Cards for Model Reporting
Trained machine learning models are increasingly used to perform high-impact
tasks in areas such as law enforcement, medicine, education, and employment. In
order to clarify the intended use cases of machine learning models and minimize
their usage in contexts for which they are not well suited, we recommend that
released models be accompanied by documentation detailing their performance
characteristics. In this paper, we propose a framework that we call model
cards, to encourage such transparent model reporting. Model cards are short
documents accompanying trained machine learning models that provide benchmarked
evaluation in a variety of conditions, such as across different cultural,
demographic, or phenotypic groups (e.g., race, geographic location, sex,
Fitzpatrick skin type) and intersectional groups (e.g., age and race, or sex
and Fitzpatrick skin type) that are relevant to the intended application
domains. Model cards also disclose the context in which models are intended to
be used, details of the performance evaluation procedures, and other relevant
information. While we focus primarily on human-centered machine learning models
in the application fields of computer vision and natural language processing,
this framework can be used to document any trained machine learning model. To
solidify the concept, we provide cards for two supervised models: One trained
to detect smiling faces in images, and one trained to detect toxic comments in
text. We propose model cards as a step towards the responsible democratization
of machine learning and related AI technology, increasing transparency into how
well AI technology works. We hope this work encourages those releasing trained
machine learning models to accompany model releases with similar detailed
evaluation numbers and other relevant documentation.