
Suggested Reads
Crossplane Providers and Managed Resources | Tutorial (Part 2)
In this second installment of our Crossplane tutorial series, we dive deeper into the world of Crossplane Providers and Managed ...
via YouTube https://www.youtube.com/watch?v=o53_7vuWjw4
Tech Conference Speaking - Impact and Measures
Speaking at tech conferences is a key part of many Developer Relations and Developer Advocacy strategies - but how can we get better at measuring the impact of these activities? Join for this audio chat where we'll talk about different approaches!
Tags:
via Pocket https://www.linkedin.com/events/techconferencespeaking-impactan7171264567392550913/
March 07, 2024 at 10:05AM
CRI-O: Applying seccomp profiles from OCI registries
https://kubernetes.io/blog/2024/03/07/cri-o-seccomp-oci-artifacts/
Author: Sascha Grunert
Seccomp stands for secure computing mode and has been a feature of the Linux kernel since version 2.6.12. It can be used to sandbox the privileges of a process, restricting the calls it is able to make from userspace into the kernel. Kubernetes lets you automatically apply seccomp profiles loaded onto a node to your Pods and containers.
But distributing those seccomp profiles is a major challenge in Kubernetes, because the JSON files have to be available on all nodes where a workload can possibly run. Projects like the Security Profiles Operator solve that problem by running as a daemon within the cluster, which makes me wonder which part of that distribution could be done by the container runtime.
Runtimes usually apply the profiles from a local path, for example:
apiVersion: v1 kind: Pod metadata: name: pod spec: containers:
- name: container image: nginx:1.25.3 securityContext: seccompProfile: type: Localhost localhostProfile: nginx-1.25.3.json
The profile nginx-1.25.3.json has to be available in the root directory of the kubelet, appended by the seccomp directory. This means the default location for the profile on-disk would be /var/lib/kubelet/seccomp/nginx-1.25.3.json. If the profile is not available, then runtimes will fail on container creation like this:
kubectl get pods
NAME READY STATUS RESTARTS AGE pod 0/1 CreateContainerError 0 38s
kubectl describe pod/pod | tail
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s node.kubernetes.io/unreachable:NoExecute op=Exists for 300s Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 117s default-scheduler Successfully assigned default/pod to 127.0.0.1 Normal Pulling 117s kubelet Pulling image "nginx:1.25.3" Normal Pulled 111s kubelet Successfully pulled image "nginx:1.25.3" in 5.948s (5.948s including waiting) Warning Failed 7s (x10 over 111s) kubelet Error: setup seccomp: unable to load local profile "/var/lib/kubelet/seccomp/nginx-1.25.3.json": open /var/lib/kubelet/seccomp/nginx-1.25.3.json: no such file or directory Normal Pulled 7s (x9 over 111s) kubelet Container image "nginx:1.25.3" already present on machine
The major obstacle of having to manually distribute the Localhost profiles will lead many end-users to fall back to RuntimeDefault or even running their workloads as Unconfined (with disabled seccomp).
CRI-O to the rescue
The Kubernetes container runtime CRI-O provides various features using custom annotations. The v1.30 release adds support for a new set of annotations called seccomp-profile.kubernetes.cri-o.io/POD and seccomp-profile.kubernetes.cri-o.io/<CONTAINER>. Those annotations allow you to specify:
a seccomp profile for a specific container, when used as: seccomp-profile.kubernetes.cri-o.io/<CONTAINER> (example: seccomp-profile.kubernetes.cri-o.io/webserver: 'registry.example/example/webserver:v1')
a seccomp profile for every container within a pod, when used without the container name suffix but the reserved name POD: seccomp-profile.kubernetes.cri-o.io/POD
a seccomp profile for a whole container image, if the image itself contains the annotation seccomp-profile.kubernetes.cri-o.io/POD or seccomp-profile.kubernetes.cri-o.io/<CONTAINER>.
CRI-O will only respect the annotation if the runtime is configured to allow it, as well as for workloads running as Unconfined. All other workloads will still use the value from the securityContext with a higher priority.
The annotations alone will not help much with the distribution of the profiles, but the way they can be referenced will! For example, you can now specify seccomp profiles like regular container images by using OCI artifacts:
apiVersion: v1 kind: Pod metadata: name: pod annotations: seccomp-profile.kubernetes.cri-o.io/POD: quay.io/crio/seccomp:v2 spec: …
The image quay.io/crio/seccomp:v2 contains a seccomp.json file, which contains the actual profile content. Tools like ORAS or Skopeo can be used to inspect the contents of the image:
oras pull quay.io/crio/seccomp:v2
Downloading 92d8ebfa89aa seccomp.json Downloaded 92d8ebfa89aa seccomp.json Pulled [registry] quay.io/crio/seccomp:v2 Digest: sha256:f0205dac8a24394d9ddf4e48c7ac201ca7dcfea4c554f7ca27777a7f8c43ec1b
jq . seccomp.json | head
{ "defaultAction": "SCMP_ACT_ERRNO", "defaultErrnoRet": 38, "defaultErrno": "ENOSYS", "archMap": [ { "architecture": "SCMP_ARCH_X86_64", "subArchitectures": [ "SCMP_ARCH_X86", "SCMP_ARCH_X32"
Inspect the plain manifest of the image
skopeo inspect --raw docker://quay.io/crio/seccomp:v2 | jq .
{ "schemaVersion": 2, "mediaType": "application/vnd.oci.image.manifest.v1+json", "config": { "mediaType": "application/vnd.cncf.seccomp-profile.config.v1+json", "digest": "sha256:ca3d163bab055381827226140568f3bef7eaac187cebd76878e0b63e9e442356", "size": 3, }, "layers": [ { "mediaType": "application/vnd.oci.image.layer.v1.tar", "digest": "sha256:92d8ebfa89aa6dd752c6443c27e412df1b568d62b4af129494d7364802b2d476", "size": 18853, "annotations": { "org.opencontainers.image.title": "seccomp.json" }, }, ], "annotations": { "org.opencontainers.image.created": "2024-02-26T09:03:30Z" }, }
The image manifest contains a reference to a specific required config media type (application/vnd.cncf.seccomp-profile.config.v1+json) and a single layer (application/vnd.oci.image.layer.v1.tar) pointing to the seccomp.json file. But now, let's give that new feature a try!
Using the annotation for a specific container or whole pod
CRI-O needs to be configured adequately before it can utilize the annotation. To do this, add the annotation to the allowed_annotations array for the runtime. This can be done by using a drop-in configuration /etc/crio/crio.conf.d/10-crun.conf like this:
[crio.runtime] default_runtime = "crun"
[crio.runtime.runtimes.crun] allowed_annotations = [ "seccomp-profile.kubernetes.cri-o.io", ]
Now, let's run CRI-O from the latest main commit. This can be done by either building it from source, using the static binary bundles or the prerelease packages.
To demonstrate this, I ran the crio binary from my command line using a single node Kubernetes cluster via local-up-cluster.sh. Now that the cluster is up and running, let's try a pod without the annotation running as seccomp Unconfined:
cat pod.yaml
apiVersion: v1 kind: Pod metadata: name: pod spec: containers:
- name: container image: nginx:1.25.3 securityContext: seccompProfile: type: Unconfined
kubectl apply -f pod.yaml
The workload is up and running:
kubectl get pods
NAME READY STATUS RESTARTS AGE pod 1/1 Running 0 15s
And no seccomp profile got applied if I inspect the container using crictl:
export CONTAINER_ID=$(sudo crictl ps --name container -q) sudo crictl inspect $CONTAINER_ID | jq .info.runtimeSpec.linux.seccomp
null
Now, let's modify the pod to apply the profile quay.io/crio/seccomp:v2 to the container:
apiVersion: v1 kind: Pod metadata: name: pod annotations: seccomp-profile.kubernetes.cri-o.io/container: quay.io/crio/seccomp:v2 spec: containers:
- name: container image: nginx:1.25.3
I have to delete and recreate the Pod, because only recreation will apply a new seccomp profile:
kubectl delete pod/pod
pod "pod" deleted
kubectl apply -f pod.yaml
pod/pod created
The CRI-O logs will now indicate that the runtime pulled the artifact:
WARN[…] Allowed annotations are specified for workload [seccomp-profile.kubernetes.cri-o.io] INFO[…] Found container specific seccomp profile annotation: seccomp-profile.kubernetes.cri-o.io/container=quay.io/crio/seccomp:v2 id=26ddcbe6-6efe-414a-88fd-b1ca91979e93 name=/runtime.v1.RuntimeService/CreateContainer INFO[…] Pulling OCI artifact from ref: quay.io/crio/seccomp:v2 id=26ddcbe6-6efe-414a-88fd-b1ca91979e93 name=/runtime.v1.RuntimeService/CreateContainer INFO[…] Retrieved OCI artifact seccomp profile of len: 18853 id=26ddcbe6-6efe-414a-88fd-b1ca91979e93 name=/runtime.v1.RuntimeService/CreateContainer
And the container is finally using the profile:
export CONTAINER_ID=$(sudo crictl ps --name container -q) sudo crictl inspect $CONTAINER_ID | jq .info.runtimeSpec.linux.seccomp | head
{ "defaultAction": "SCMP_ACT_ERRNO", "defaultErrnoRet": 38, "architectures": [ "SCMP_ARCH_X86_64", "SCMP_ARCH_X86", "SCMP_ARCH_X32" ], "syscalls": [ {
The same would work for every container in the pod, if users replace the /container suffix with the reserved name /POD, for example:
apiVersion: v1 kind: Pod metadata: name: pod annotations: seccomp-profile.kubernetes.cri-o.io/POD: quay.io/crio/seccomp:v2 spec: containers:
- name: container image: nginx:1.25.3
Using the annotation for a container image
While specifying seccomp profiles as OCI artifacts on certain workloads is a cool feature, the majority of end users would like to link seccomp profiles to published container images. This can be done by using a container image annotation; instead of being applied to a Kubernetes Pod, the annotation is some metadata applied at the container image itself. For example, Podman can be used to add the image annotation directly during image build:
podman build \ --annotation seccomp-profile.kubernetes.cri-o.io=quay.io/crio/seccomp:v2 \ -t quay.io/crio/nginx-seccomp:v2 .
The pushed image then contains the annotation:
skopeo inspect --raw docker://quay.io/crio/nginx-seccomp:v2 |
jq '.annotations."seccomp-profile.kubernetes.cri-o.io"'
"quay.io/crio/seccomp:v2"
If I now use that image in an CRI-O test pod definition:
apiVersion: v1 kind: Pod metadata: name: pod
no Pod annotations set
spec: containers:
- name: container image: quay.io/crio/nginx-seccomp:v2
Then the CRI-O logs will indicate that the image annotation got evaluated and the profile got applied:
kubectl delete pod/pod
pod "pod" deleted
kubectl apply -f pod.yaml
po
Misfits - Feat. ContainerSSH and Confidential Containers (You Choose!, Ch. 3, Ep. 10)
Misfits - Choose Your Own Adventure: The Treacherous Trek to Security In this episode, we'll go through security-related tools that ...
via YouTube https://www.youtube.com/watch?v=AKmDmhd5hpQ