Found 2 bookmarks
Custom sorting
๐—ช๐—ฒ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐˜๐—ผ ๐—บ๐—ผ๐˜ƒ๐—ฒ ๐—ฏ๐—ฒ๐˜†๐—ผ๐—ป๐—ฑ ๐—ฐ๐—ฎ๐—น๐—น๐—ถ๐—ป๐—ด ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜†๐˜๐—ต๐—ถ๐—ป๐—ด ๐—ฎ๐—ป โ€œ๐—Ÿ๐—Ÿ๐— .โ€ โฌ‡๏ธ
๐—ช๐—ฒ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐˜๐—ผ ๐—บ๐—ผ๐˜ƒ๐—ฒ ๐—ฏ๐—ฒ๐˜†๐—ผ๐—ป๐—ฑ ๐—ฐ๐—ฎ๐—น๐—น๐—ถ๐—ป๐—ด ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜†๐˜๐—ต๐—ถ๐—ป๐—ด ๐—ฎ๐—ป โ€œ๐—Ÿ๐—Ÿ๐— .โ€ โฌ‡๏ธ
In 2025, the AI landscape has evolved far beyond just large language models. Knowing which model to use for your specific use case โ€” and how โ€” is becoming a strategic advantage. Letโ€™s break down theย 8 most important model typesย and what theyโ€™re actually built to do: โฌ‡๏ธ 1. ๐—Ÿ๐—Ÿ๐—  โ€“ ๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Your ChatGPT-style model. Handles text, predicts the next token, and powers 90% of GenAI hype. ๐Ÿ›  Use case: content, code, convos. 2. ๐—Ÿ๐—–๐—  โ€“ ๐—Ÿ๐—ฎ๐˜๐—ฒ๐—ป๐˜ ๐—–๐—ผ๐—ป๐˜€๐—ถ๐˜€๐˜๐—ฒ๐—ป๐—ฐ๐˜† ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Lightweight, diffusion-style models. Fast, quantized, and efficient โ€” perfect for real-time or edge deployment. ๐Ÿ›  Use case: image generation, optimized inference. 3. ๐—Ÿ๐—”๐—  โ€“ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐—”๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Where LLM meets planning. Adds memory, task breakdown, and intent recognition. ๐Ÿ›  Use case: AI agents, tool use, step-by-step execution. 4. ๐— ๐—ผ๐—˜ โ€“ ๐— ๐—ถ๐˜…๐˜๐˜‚๐—ฟ๐—ฒ ๐—ผ๐—ณ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜๐˜€ โ†’ One model, many minds. Routes input to the right โ€œexpertโ€ model slice โ€” dynamic, scalable, efficient. ๐Ÿ›  Use case: high-performance model serving at low compute cost. 5. ๐—ฉ๐—Ÿ๐—  โ€“ ๐—ฉ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Multimodal beast. Combines image + text understanding via shared embeddings. ๐Ÿ›  Use case: Gemini, GPT-4o, search, robotics, assistive tech. 6. ๐—ฆ๐—Ÿ๐—  โ€“ ๐—ฆ๐—บ๐—ฎ๐—น๐—น ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Tiny but mighty. Designed for edge use, fast inference, low latency, efficient memory. ๐Ÿ›  Use case: on-device AI, chatbots, privacy-first GenAI. 7. ๐— ๐—Ÿ๐—  โ€“ ๐— ๐—ฎ๐˜€๐—ธ๐—ฒ๐—ฑ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ The OG foundation model. Predicts masked tokens using bidirectional context. ๐Ÿ›  Use case: search, classification, embeddings, pretraining. 8. ๐—ฆ๐—”๐—  โ€“ ๐—ฆ๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜ ๐—”๐—ป๐˜†๐˜๐—ต๐—ถ๐—ป๐—ด ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Vision model for pixel-level understanding. Highlights, segments, and understands *everything* in an image. ๐Ÿ›  Use case: medical imaging, AR, robotics, visual agents. Understanding these distinctions is essentialย for selecting the right model architecture for specific applications, enabling more effective, scalable, and contextually appropriate AI interactions. While these are some of the most prominent specialized AI models, there are many more emerging across language, vision, speech, and robotics โ€” each optimized for specific tasks and domains. LLM, VLM, MoE, SLM, LCMย โ†’ GenAI LAM, MLM, SAMย โ†’ Not classic GenAI, butย critical building blocksย for AI agents, reasoning, and multimodal systems ๐—œ ๐—ฒ๐˜…๐—ฝ๐—น๐—ผ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜๐˜€ โ€” ๐—ฎ๐—ป๐—ฑ ๐˜„๐—ต๐—ฎ๐˜ ๐˜๐—ต๐—ฒ๐˜† ๐—บ๐—ฒ๐—ฎ๐—ป ๐—ณ๐—ผ๐—ฟ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€ โ€” ๐—ถ๐—ป ๐—บ๐˜† ๐˜„๐—ฒ๐—ฒ๐—ธ๐—น๐˜† ๐—ป๐—ฒ๐˜„๐˜€๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ. ๐—ฌ๐—ผ๐˜‚ ๐—ฐ๐—ฎ๐—ป ๐˜€๐˜‚๐—ฏ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ: https://lnkd.in/dbf74Y9E Kudos for the graphic goes to Generative AI ! | 45 comments on LinkedIn
ยทlinkedin.comยท
๐—ช๐—ฒ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐˜๐—ผ ๐—บ๐—ผ๐˜ƒ๐—ฒ ๐—ฏ๐—ฒ๐˜†๐—ผ๐—ป๐—ฑ ๐—ฐ๐—ฎ๐—น๐—น๐—ถ๐—ป๐—ด ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜†๐˜๐—ต๐—ถ๐—ป๐—ด ๐—ฎ๐—ป โ€œ๐—Ÿ๐—Ÿ๐— .โ€ โฌ‡๏ธ