AI News

AI News

576 bookmarks
Custom sorting
New research finally offers a robust answer to the question, "Does using AI make our Instructional Designs BETTER, or just faster?"
New research finally offers a robust answer to the question, "Does using AI make our Instructional Designs BETTER, or just faster?"
๐Ÿ‘‰ In a controlled test, 27 Instructional Design postgrads at Carnegie Mellon created designs both with & without GPT-4 assistance. ๐Ÿ‘‰ Every design was blind-scored on quality by expert instructors. ๐Ÿ‘‰The result: Design with AI was not not just faster, but produced better quality designs in 100% of the cases. But the detail is where it gets interesting...๐Ÿ‘‡ The research also revealed a "capability frontier"โ€”a clear boundary between where AI helps Instructional Design quality most, and where it might actually compromise it. TLDR: ๐Ÿš€ USE AI FOR: Designs which use well-established design methodologies, step-by-step processes & widely-discussed topics. โŒ BE MORE CAUTIOUS WHEN USING AI FOR: Designs on niche, novel & complex topics which use less well-established design methodologies. ๐Ÿ’กBonus insight: In line with broader research on the impact of AI on knowledge work, the research also suggests that novice Instructional Designers benefit *most* from AI design assistance (but only when we are strict on what sorts of tasks they use it for). To learn more about the research & what it tells us about how to work with AI in our day to day work, check out my latest blog post (link in comments). Happy innovating! Phil ๐Ÿ‘‹
ยทlinkedin.comยท
New research finally offers a robust answer to the question, "Does using AI make our Instructional Designs BETTER, or just faster?"
There are massive disparities in how people view AI, in their degree of nervousness, excitement, trust in systems, and personal impact. This updated Ipsos AI Monitor 2025 shares many fascinating insights.
There are massive disparities in how people view AI, in their degree of nervousness, excitement, trust in systems, and personal impact. This updated Ipsos AI Monitor 2025 shares many fascinating insights.
English-speaking countries remain the most nervous and unexcited, with Asia dominating as most positive nations. The second chart I've shared here is interesting, in that while people are relatively positive about the impact of AI on their job and also the economy, they are considerably less positive about the impact of AI on the job market. Not surprisingly, those nations that believe AI will benefit the economy are most likely to be excited. The global average for believing AI will profoundly change their life in the next 3-5 years is 67%, ranging from 52% in Britain to 84% in Indonesia. So most people Of course, if people believe AI will profoundly change their lives there is likely cause for at least some nervousness and hopefully also excitement. Where the balance lies in a nation, and within any specific organization, must shape governance and change initiatives to maximize good cause for excitement and minimize cause for nervousness. Because it is a wild ride.
ยทlinkedin.comยท
There are massive disparities in how people view AI, in their degree of nervousness, excitement, trust in systems, and personal impact. This updated Ipsos AI Monitor 2025 shares many fascinating insights.
The top priority for most leaders is integrating AI into the business. And AI itself is transforming leadership and leadership development.
The top priority for most leaders is integrating AI into the business. And AI itself is transforming leadership and leadership development.
Some great insights in this report from Harvard Business Review, particularly interesting to me, not only as much of my work is in client leadership development, but also the reality that effective leadership will be critical in us navigating the challenging path to prosperous Humans + AI organizations. Not surprisingly, 55% of survey respondents said incorporating GenAI into business practices is their #1 priority this year. To support that, the top human capital project - at 53% - is adopting or expanding AI-based talent management. The real headline is that over 80% of HR leaders expect that every level of leader will spend more time on leadership development this year, in many cases significantly more. The question is: how to design the programs and the time spent to result in true expansion of leadership capabilities. "Speed to skill is the metric in focus". Which requires a very different, intrinsically Humans + AI approach: "In a two-way information exchange, AI is fed an organizationโ€™s domain-specific knowledge and humans access AI-generated learning resources based on that knowledge. AI systems learn from human inputs, improving over time, while humans gain insights from AI-generated data. Properly done, these efforts can build the collective intelligence of humans and machines, enhancing the organizationโ€™s ability to solve complex problems and adapt to changing environments." A lot more in the report. What is clear is that in an accelerating world leadership development is more important than ever, both to address AI-driven change, and supported by AI.
ยทlinkedin.comยท
The top priority for most leaders is integrating AI into the business. And AI itself is transforming leadership and leadership development.
Introduction to AI Safety, Ethics, and Society | Peter Slattery, PhD | 10 comments
Introduction to AI Safety, Ethics, and Society | Peter Slattery, PhD | 10 comments
๐Ÿ“ข Free Book: "Introduction to AI Safety, Ethics, and Societyย is a free online textbook by Center for AI Safety Executive Directorย Dan Hendrycks. It is designed to be accessible for a non-technical audience and integrates insights from a range of disciplines to cover how modern AI systems work, technical and societal challenges we face in ensuring that these systems are developed safely, and strategies for effectively managing risks from AI whileย capturingย its benefits. This bookย has been endorsed by leading AIย researchers, includingย Yoshua Bengioย andย Boaz Barak,ย and has already been used to teach over 500 students through ourย virtual course. It is available at no cost inย downloadable textย andย audiobookย formats, as well as in print fromย Taylor & Francis. We also offer lecture slides and other supplementary resources for educators on ourย website." Thanks to Connor Smith for sharing this with me. Due to file limit issues, I have only attached the first 17 pages of the much larger textbook. See link in comments. | 10 comments on LinkedIn
ยทlinkedin.comยท
Introduction to AI Safety, Ethics, and Society | Peter Slattery, PhD | 10 comments
Der KI-Filmemacher Alex Patrascu zeigt in folgendem Video, wie aus Gemรคlden ganze Szene entstehen, die dann zusammengefรผhrt werden
Der KI-Filmemacher Alex Patrascu zeigt in folgendem Video, wie aus Gemรคlden ganze Szene entstehen, die dann zusammengefรผhrt werden
Die Bilder wurden KI-generiert, dann in Videos mit รœbergรคngen animiert und am Schluss noch ein Audio drรผbergelegt. Zack, fertig ist der Short Movie. Dies wirkt schon fast wie eine Sitcom mit Mona Lisa, Van Gogh & Co. Zum Linkedin-Beitrag https://lnkd.in/enY82ifv
ยทlinkedin.comยท
Der KI-Filmemacher Alex Patrascu zeigt in folgendem Video, wie aus Gemรคlden ganze Szene entstehen, die dann zusammengefรผhrt werden
Appleโ€™s latest announcement is worth paying attention to. Theyโ€™ve just introduced an AI model that doesnโ€™t need the cloud โ€“ it runs straight in your browser.
Appleโ€™s latest announcement is worth paying attention to. Theyโ€™ve just introduced an AI model that doesnโ€™t need the cloud โ€“ it runs straight in your browser.
The specs are impressive: Up to 85x faster 3.4x smaller footprint Real-time performance directly in-browser Capable of live video captioning โ€“ fully local No external infrastructure. No latency. No exposure of sensitive data. Simply secure, on-device AI. Yes, the technical benchmarks will be debated. But the bigger story is Appleโ€™s positioning. This is about more than numbers โ€“ itโ€™s about shaping a narrative where AI is personal, private, and seamlessly integrated. At Copenhagen Institute for Futures Studies, weโ€™ve been tracking the rise of small-scale, locally running AI models for some time. We believe this shift has the potential to redefine how organizations and individuals interact with intelligent systems โ€“ moving AI from โ€œout thereโ€ in the cloud to right here, at the edge. | 10 comments on LinkedIn
ยทlinkedin.comยท
Appleโ€™s latest announcement is worth paying attention to. Theyโ€™ve just introduced an AI model that doesnโ€™t need the cloud โ€“ it runs straight in your browser.
Apertus: Ein vollstรคndig offenes, transparentes und mehrsprachiges Sprachmodell
Apertus: Ein vollstรคndig offenes, transparentes und mehrsprachiges Sprachmodell
Die EPFL, die ETH Zรผrich und das Schweizerische Supercomputing-Zentrum CSCS haben heute Apertus verรถffentlicht: Das erste umfangreiche, offene und mehrsprachige Sprachmodell aus der Schweiz. Damit setzen sie einen Meilenstein fรผr eine transparente und vielfรคltige generative KI.
ยทethz.chยท
Apertus: Ein vollstรคndig offenes, transparentes und mehrsprachiges Sprachmodell
UNESCO ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐˜€ ๐˜๐—ผ๐—ฑ๐—ฎ๐˜† ๐—ถ๐˜๐˜€ ๐Ÿญ๐Ÿฒ๐Ÿฌ+ ๐—ฝ๐—ฎ๐—ด๐—ฒ ๐—ด๐—น๐—ผ๐—ฏ๐—ฎ๐—น ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜ ๐—ผ๐—ป ๐—”๐—œ ๐—ฎ๐—ป๐—ฑ ๐˜๐—ต๐—ฒ ๐—™๐˜‚๐˜๐˜‚๐—ฟ๐—ฒ ๐—ผ๐—ณ ๐—˜๐—ฑ๐˜‚๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€” ๐—ฎ๐—ป๐—ฑ ๐—œโ€™๐—บ ๐—ต๐—ผ๐—ป๐—ผ๐—ฟ๐—ฒ๐—ฑ ๐˜๐—ผ ๐—ต๐—ฎ๐˜ƒ๐—ฒ ๐—ฎ๐—ฑ๐—ฑ๐—ฒ๐—ฑ ๐—ฎ ๐˜๐—ต๐—ถ๐—ป๐—ธ ๐—ฝ๐—ถ๐—ฒ๐—ฐ๐—ฒ ๐˜๐—ผ ๐˜๐—ต๐—ถ๐˜€ ๐—ฒ๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป. โฌ‡๏ธ
UNESCO ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐˜€ ๐˜๐—ผ๐—ฑ๐—ฎ๐˜† ๐—ถ๐˜๐˜€ ๐Ÿญ๐Ÿฒ๐Ÿฌ+ ๐—ฝ๐—ฎ๐—ด๐—ฒ ๐—ด๐—น๐—ผ๐—ฏ๐—ฎ๐—น ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜ ๐—ผ๐—ป ๐—”๐—œ ๐—ฎ๐—ป๐—ฑ ๐˜๐—ต๐—ฒ ๐—™๐˜‚๐˜๐˜‚๐—ฟ๐—ฒ ๐—ผ๐—ณ ๐—˜๐—ฑ๐˜‚๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€” ๐—ฎ๐—ป๐—ฑ ๐—œโ€™๐—บ ๐—ต๐—ผ๐—ป๐—ผ๐—ฟ๐—ฒ๐—ฑ ๐˜๐—ผ ๐—ต๐—ฎ๐˜ƒ๐—ฒ ๐—ฎ๐—ฑ๐—ฑ๐—ฒ๐—ฑ ๐—ฎ ๐˜๐—ต๐—ถ๐—ป๐—ธ ๐—ฝ๐—ถ๐—ฒ๐—ฐ๐—ฒ ๐˜๐—ผ ๐˜๐—ต๐—ถ๐˜€ ๐—ฒ๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป. โฌ‡๏ธ
The full report is being presented from 2โ€“4 September at UNESCOโ€™s Digital Learning Week 2025 in Paris. Itโ€™s a must-read for anyone interested in learning, technology, and the future of education โ€” packed with insights and practical perspectives. ๐—ง๐—ต๐—ฒ ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜ ๐—ฐ๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐˜€ ๐˜๐—ต๐—ฒ ๐—ณ๐—ผ๐—น๐—น๐—ผ๐˜„๐—ถ๐—ป๐—ด ๐—ฎ๐—ฟ๐—ฒ๐—ฎ๐˜€: โฌ‡๏ธย  ๐Ÿญ.ย ๐—”๐—œ ๐—ณ๐˜‚๐˜๐˜‚๐—ฟ๐—ฒ๐˜€ ๐—ถ๐—ป ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป: ๐—ฃ๐—ต๐—ถ๐—น๐—ผ๐˜€๐—ผ๐—ฝ๐—ต๐—ถ๐—ฐ๐—ฎ๐—น ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ผ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ โ†’ AI futures arenโ€™t just about intelligence scores โ€” they push us to rethink what โ€œknowingโ€ really means. And the whole debate isnโ€™t only technical but philosophical: how do we define learning, progress, and human identity in an AI age? ๐Ÿฎ. ๐——๐—ฒ๐—ฏ๐—ฎ๐˜๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—น๐˜€ ๐—ผ๐—ณ ๐—”๐—œ โ†’ AI in schools and universities is not inevitable โ€” education systems have choices, agency, and the power to shape direction. The core tension here: opportunity for reinvention vs. risks of over-automation and cultural bias. ๐Ÿฏ. ๐—”๐—œ ๐—ฝ๐—ฒ๐—ฑ๐—ฎ๐—ด๐—ผ๐—ด๐—ถ๐—ฒ๐˜€, ๐—ฎ๐˜€๐˜€๐—ฒ๐˜€๐˜€๐—บ๐—ฒ๐—ป๐˜ ๐—ฎ๐—ป๐—ฑ ๐—ฒ๐—บ๐—ฒ๐—ฟ๐—ด๐—ถ๐—ป๐—ด ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ณ๐˜‚๐˜๐˜‚๐—ฟ๐—ฒ๐˜€ โ†’ Classrooms canโ€™t be reduced to data points โ€” AI must respect the incomputable nature of learning. And hyper-personalization risks turning education into an isolated bubble rather than a social dialogue. ๐Ÿฐ. ๐—ฅ๐—ฒ๐˜ƒ๐—ฎ๐—น๐˜‚๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐—ฟ๐—ฒ๐—ฐ๐—ฒ๐—ป๐˜๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—ต๐˜‚๐—บ๐—ฎ๐—ป ๐˜๐—ฒ๐—ฎ๐—ฐ๐—ต๐—ฒ๐—ฟ๐˜€ โ†’ Teachers remain the backbone of education โ€” AI should amplify their work, not sideline it. Building AI โ€œwithโ€ educators, not โ€œforโ€ them, is the only path to trust and adoption. ๐Ÿฑ. ๐—˜๐˜๐—ต๐—ถ๐—ฐ๐—ฎ๐—น ๐—ฎ๐—ป๐—ฑ ๐—ด๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ป๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ถ๐—บ๐—ฝ๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—”๐—œ ๐—ณ๐˜‚๐˜๐˜‚๐—ฟ๐—ฒ๐˜€ ๐—ถ๐—ป ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ†’ AI in schools demands an ethics of care โ€” transparent, fair, and accountable by design. Governance canโ€™t be outsourced to tech โ€” it requires democratic oversight and public participation. ๐Ÿฒ. ๐—–๐—ผ๐—ป๐—ณ๐—ฟ๐—ผ๐—ป๐˜๐—ถ๐—ป๐—ด ๐—ฐ๐—ผ๐—ฑ๐—ฒ๐—ฑ ๐—ถ๐—ป๐—ฒ๐—พ๐˜‚๐—ฎ๐—น๐—ถ๐˜๐—ถ๐—ฒ๐˜€ ๐—ถ๐—ป ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ†’ AI can close divides โ€” but only if it is localized, contextualized, and designed for inclusion. Without clarity, bias will persist: marginalized groups risk being left behind. ๐Ÿณ. ๐—ฅ๐—ฒ๐—ถ๐—บ๐—ฎ๐—ด๐—ถ๐—ป๐—ถ๐—ป๐—ด ๐—”๐—œ ๐—ถ๐—ป ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฝ๐—ผ๐—น๐—ถ๐—ฐ๐˜†: ๐—˜๐˜ƒ๐—ถ๐—ฑ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ด๐—ฒ๐—ผ๐—ฝ๐—ผ๐—น๐—ถ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—ฟ๐—ฒ๐—ฎ๐—น๐—ถ๐˜๐—ถ๐—ฒ๐˜€ โ†’ Policy must keep pace with fast-moving AI capabilities, balancing human and machine intelligence. AI will shape every industry โ€” but in education, it will shape society itself. Download: https://lnkd.in/dbc6ZJi4 Enjoy reading! And please share your views: โฌ‡๏ธ ๐—ฃ.๐—ฆ. ๐—œ๐—ณ ๐˜†๐—ผ๐˜‚ ๐—น๐—ถ๐—ธ๐—ฒ ๐˜๐—ต๐—ถ๐˜€, ๐˜†๐—ผ๐˜‚โ€™๐—น๐—น ๐—น๐—ผ๐˜ƒ๐—ฒ ๐—บ๐˜† ๐—ป๐—ฒ๐˜„ ๐—ป๐—ฒ๐˜„๐˜€๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ. ๐—œ๐˜โ€™๐˜€ ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ฟ๐—ฒ๐—ฎ๐—ฑ ๐—ฏ๐˜† ๐Ÿฎ๐Ÿฌ,๐Ÿฌ๐Ÿฌ๐Ÿฌ+ ๐—ฝ๐—ฒ๐—ผ๐—ฝ๐—น๐—ฒ: https://lnkd.in/dbf74Y9E | 39 comments on LinkedIn
ยทlinkedin.comยท
UNESCO ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐˜€ ๐˜๐—ผ๐—ฑ๐—ฎ๐˜† ๐—ถ๐˜๐˜€ ๐Ÿญ๐Ÿฒ๐Ÿฌ+ ๐—ฝ๐—ฎ๐—ด๐—ฒ ๐—ด๐—น๐—ผ๐—ฏ๐—ฎ๐—น ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜ ๐—ผ๐—ป ๐—”๐—œ ๐—ฎ๐—ป๐—ฑ ๐˜๐—ต๐—ฒ ๐—™๐˜‚๐˜๐˜‚๐—ฟ๐—ฒ ๐—ผ๐—ณ ๐—˜๐—ฑ๐˜‚๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€” ๐—ฎ๐—ป๐—ฑ ๐—œโ€™๐—บ ๐—ต๐—ผ๐—ป๐—ผ๐—ฟ๐—ฒ๐—ฑ ๐˜๐—ผ ๐—ต๐—ฎ๐˜ƒ๐—ฒ ๐—ฎ๐—ฑ๐—ฑ๐—ฒ๐—ฑ ๐—ฎ ๐˜๐—ต๐—ถ๐—ป๐—ธ ๐—ฝ๐—ถ๐—ฒ๐—ฐ๐—ฒ ๐˜๐—ผ ๐˜๐—ต๐—ถ๐˜€ ๐—ฒ๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป. โฌ‡๏ธ
Wird fachliches Wissen durch KI รผberflรผssig? ๐Ÿค” Gabi Reinmann stellt diese weit verbreitete Annahme in ihrem Beitrag radikal infrage.
Wird fachliches Wissen durch KI รผberflรผssig? ๐Ÿค” Gabi Reinmann stellt diese weit verbreitete Annahme in ihrem Beitrag radikal infrage.
Ihre รผberzeugende Argumentation zeigt, warum wir im KI-Zeitalter nicht weniger, sondern mehr Fachwissen benรถtigen. In ihrer Analyse deckt sie auรŸerdem problematische Denkfehler in der aktuellen Bildungsdebatte auf. Zentrale Argumente des Beitrags: ๐Ÿ“š Verengter Wissensbegriff: Aktuell wird Wissen oft fรคlschlicherweise nur als auswendig gelerntes Faktenwissen verstanden. Dabei umfasst echtes Fachwissen viel mehr. Es reicht von prozeduralem Wissen bis hin zu verkรถrpertem, intuitivem Verstehen. ๐Ÿง  Kritisches Denken ist domรคnenspezifisch: Die Expertiseforschung zeigt eindeutig, dass kritisches Denken nicht als generische โ€žZukunftskompetenzโ€ funktioniert, sondern tiefes fachspezifisches Wissen als Fundament braucht. โš ๏ธ Paradox der KI-Integration: Je mehr wir KI einsetzen, desto wichtiger wird menschliche Expertise. Denn nur, wer รผber fundiertes Fachwissen verfรผgt, kann KI-generierte Inhalte wirklich kritisch bewerten und validieren. ๐Ÿšจ Risiko des โ€žDeskillingโ€œ: Ein รผbermรครŸiges Vertrauen in KI kann zwar zu einer kognitiven Entlastung fรผhren, reduziert aber gleichzeitig unsere Bereitschaft zum kritischen Denken. ๐ŸŽฏ Meine Ergรคnzung: Ich bin รผberzeugt, dass wir Fachwissen nicht nur zur Prรผfung von KI-Ergebnissen benรถtigen. Um verschiedene KIs zu orchestrieren und mit ihnen einen profunden Fachdialog zu fรผhren, ist tiefes Domรคnenwissen unverzichtbar. Die Qualitรคt der Ausgaben von KI ist abhรคngig von der Qualitรคt der Eingaben, da sich KI auf das Niveau der nutzenden Person einstellt. Nur mit fundiertem Fachwissen kรถnnen prรคzise Fragen gestellt, komplexe Zusammenhรคnge erklรคrt und hochwertige, nuancierte Ergebnisse erzielt werden. Was bedeutet das fรผr uns? Anstatt die Wissensvermittlung zu reduzieren, mรผssen wir sie stรคrken. Der Aufbau von tiefem, vernetztem Fachwissen ist entscheidend, um Lernende zu einem kritischen und erfolgreichen Umgang mit KI zu befรคhigen. Es geht nicht um ein Entweder-Oder. Die so oft geforderten โ€žFuture Skillsโ€ wachsen vielmehr erst auf dem fruchtbaren Boden von solidem Fachwissen.| 22 Kommentare auf LinkedIn
ยทlinkedin.comยท
Wird fachliches Wissen durch KI รผberflรผssig? ๐Ÿค” Gabi Reinmann stellt diese weit verbreitete Annahme in ihrem Beitrag radikal infrage.
Etablieren Sie Infinite Learning als eine Art unbegrenztes Lernens mit KI in Ihrem Unternehmen | LinkedIn Learning
Etablieren Sie Infinite Learning als eine Art unbegrenztes Lernens mit KI in Ihrem Unternehmen | LinkedIn Learning
Dieser LinkedIn Learning-Kurs hilft Ihnen dabei, die besten Einsatzmรถglichkeiten mit KI zu erkunden, um Infinite Learning und Infinite Development zu etablieren. Durch den Kurs fรผhrt Sie Jan Foelsing, Autor des Buchs ยปNew Work braucht New Learningยซ, Tech-Experte und Tool-Nerd, der Unternehmen und Teams auf dem Weg zu einer wirksameren Lernkultur, New Learning und vor allem dem sinnvollen Einsatz von KI begleitet.
ยทlinkedin.comยท
Etablieren Sie Infinite Learning als eine Art unbegrenztes Lernens mit KI in Ihrem Unternehmen | LinkedIn Learning
KI hebt den Boden an โ€“ und verschiebt die Karten am Arbeitsmarkt!
KI hebt den Boden an โ€“ und verschiebt die Karten am Arbeitsmarkt!
KI hebt den Boden an โ€“ und verschiebt die Karten am Arbeitsmarkt! Eine unerwartete Chance fรผr erfahrene Fachkrรคfte. In meinem Blogpost "KI hebt den Boden an" hatte ich darรผber geschrieben, wie Kรผnstliche Intelligenz (KI) den Einstieg ins Lernen dramatisch erleichtert. Sie ist ein "Floor Raiser", der uns schneller auf ein produktives Niveau bringt. Doch die neue "Canaries in the Coal Mine"-Studie des Stanford Digital Economy Lab zeigt nun, dass dieser angehobene "Boden" den Arbeitsmarkt fรผr BerufseinsteigerInnen deutlich verรคndert โ€“ und gleichzeitig neue Tรผren fรผr erfahrenere Erwerbstรคtige รถffnet. Die Studie enthรผllt, dass BerufseinsteigerInnen im Alter von 22-25 Jahren einen signifikanten Rรผckgang der Beschรคftigung in stark KI-exponierten Berufen erleben. Ein prรคgnantes Beispiel: "Die Beschรคftigung von SoftwareentwicklerInnen im Alter von 22 bis 25 Jahren ist laut ADP-Daten seit ihrem Hรถchststand Ende 2022 um fast 20 % zurรผckgegangen.". Warum trifft es gerade die Jรผngsten? Die ForscherInnen erklรคren, dass KI besonders effektiv "kodifiziertes Wissen" ersetzt โ€“ also das "Buchwissen", das frisch von der Universitรคt kommt. Da junge Arbeitskrรคfte typischerweise mehr kodifiziertes als "stillschweigendes Wissen" (Erfahrung) mitbringen, sind sie anfรคlliger fรผr die Aufgabenablรถsung durch KI. Hier kommt die entscheidende Wendung fรผr alle mit Berufserfahrung: "Im Gegensatz dazu sind die Beschรคftigungstrends fรผr erfahrenere ArbeitnehmerInnen in denselben Berufen [...] stabil geblieben oder weiter gewachsen.". Die Studie zeigt, dass der Rรผckgang der Berufseinsteiger-Beschรคftigung in Anwendungen von KI stattfindet, die die Arbeit automatisieren, nicht aber dort, wo KI die Arbeit augmentiert (ergรคnzt). Erfahrene Fachkrรคfte besitzen das stillschweigende Wissen โ€“ jene unbezahlbaren Tipps, Tricks und das Urteilsvermรถgen, das sich erst durch jahrelange Praxis ansammelt und von KI nicht ersetzt, sondern ideal ergรคnzt (augmentiert) werden kann. Die Nutzung von KI als Augmentierung fรผhrt sogar zu robustem Beschรคftigungswachstum. Fazit fรผr Fรผhrung und Karriereentwicklung: Wรคhrend KI den "Boden" der Basiskompetenzen anhebt, erschwert sie mรถglicherweise den Einstieg fรผr diejenigen, die nur auf diesem angehobenen Niveau operieren. Fรผr erfahrene Erwerbstรคtige ist dies jedoch eine enorme Chance: Ihre gesammelte Erfahrung und die Fรคhigkeit, KI als mรคchtiges Augmentationswerkzeug zu nutzen, machen sie zu unverzichtbaren GestalterInnen der zukรผnftigen Arbeitswelt. Reflexion: Wie kรถnnen erfahrene Professionals diese Chance ergreifen und KI gezielt zur Wertsteigerung ihrer Expertise einsetzen? Wie gelingt es, stillschweigendes Wissen aktiv mit KI zu verbinden? Hier der Link zur Studie: https://lnkd.in/dEArWX58 #KI #Arbeitsmarkt #Fรผhrung #Lernen #GenerativeAI #FloorRaiser #Erfahrung #ZukunftderArbeit #Skills #Karriere
ยทlinkedin.comยท
KI hebt den Boden an โ€“ und verschiebt die Karten am Arbeitsmarkt!
Is AI coaching really coaching?
Is AI coaching really coaching?
Is AI coaching really coaching? Iโ€™m not sure it matters. Hiding behind semantics wonโ€™t shelter our profession from the coming tidal wave. Fidji Simo, OpenAI's CEO of Applications, recently shared her vision for the future of AI; including transforming personalized coaching from a "privilege reserved for the few" into an everyday service for everyone. Her dream, inspired by her own transformative relationship with her human coach Katia, poses fascinating questions we're actively exploring at the @Hudson Institute of Coaching. How are weโ€”coaches, leaders, learning professionals, growth-minded individualsโ€”to think of it? While Prof. Nicky Terblanche (PhD) and other researchers explore the rapidly expanding frontier of AI coachingโ€™s developmental potential, Tatiana Bachkirova and Robert Kemp have brilliantly articulated the unique value of human coaching in transforming individuals and organizations alike. My latest for Forbes examines the tension between democratization and depth in the age of AI coaching. Academic research offers a number of valuable insights: โ˜‘๏ธ AI can match human coaches in terms of structured goal-tracking and maintaining momentum. ๐Ÿ”ฅ The deepest transformation emerges through "heat experiences"โ€”moments of productive discomfort that require genuine human witness and relational risk that an AI cannot replicate. ๐Ÿ‘ฅ Professional coaching comprises six essential elements that current AI cannot fully embody: joint inquiry, meaning-for-action, values navigation, contextual understanding, relational attunement, and fostering client autonomy. I believe the future isn't about choosing sides. Instead, it's about thoughtful integration that preserves what makes human-to-human coaching transformative while exploring technologyโ€™s potential to expand access to meaningful development. The path forward requires care to distinguish what technology can replicate from what only emerges when one human commits to another's growth. https://lnkd.in/eUV89Vcc How are you thinking about AI's role in human development? Can we preserve the irreducible power of human presence while making meaningful growth more accessible? | 105 comments on LinkedIn
ยทlinkedin.comยท
Is AI coaching really coaching?
"Human in the loop". I hear this phrase dozens of times per week. In LinkedIn posts. In board meetings about AI strategy. In product requirements. In compliance documents that tick the "responsible AI" box. It's become the go-to phrase for any situation where humans interact with AI decisions...
"Human in the loop". I hear this phrase dozens of times per week. In LinkedIn posts. In board meetings about AI strategy. In product requirements. In compliance documents that tick the "responsible AI" box. It's become the go-to phrase for any situation where humans interact with AI decisions...
But there's a story I think of when I hear "human in the loop" which makes me think we're grossly over-simplifying things. It's a story about the man who saved the world. September 26, 1983. The height of the Cold War. Lieutenant Colonel Stanislav Petrov was the duty officer at a secret Soviet bunker, monitoring early warning satellites. His job was simple: if computers detected incoming American missiles, report it immediately so the USSR could launch its counterattack. 12:15 AM... the unthinkable. Every alarm in the facility started screaming. The screens showed five US ballistic missiles, 28 minutes from impact. Confidence level: 100%. Petrov had minutes to decide whether to trigger a chain reaction that would start nuclear war and could very well end civilisation as we knew it. He was the "human in the loop" in the most literal, terrifying sense. Everything told him to follow protocol. His training. His commanders. The computers. But something felt wrong. His intuition, built from years of intelligence work, whispered that this didn't match what he knew about US strategic thinking. Against every protocol, against the screaming certainty of technology, he pressed the button marked "false alarm". Twenty-three minutes of gripping fear passed before ground radar confirmed: no missiles. The system had mistaken a rare alignment of sunlight on high-altitude clouds for incoming warheads. His decision to break the loop prevented nuclear war. What made Petrov effective wasn't just being "in the loop" - it was having genuine authority, time to think, and understanding the bigger picture well enough to question the system. Most of today's "human in the loop" implementations have none of these qualities. Instead, we see job applications rejected by algorithms before recruiters ever see promising candidates. Customer service bots that frustrate instead of giving agents the context to actually solve problems. AI systems sold as human replacements when they should be human amplifiers. The framework I use with organisations building AI systems starts with two practical questions every leader can answer: what are you optimising for, and what's at stake? It then points to the type of intentional human-AI oversight design that works best. Routine processing might only need "spot checking" - periodic human review of AI decisions. Innovation projects might use "collaborative ideation" - AI generating options while humans provide strategic direction. The goal isn't perfect categorisation but moving beyond generic "human in the loop" to build the the systems we actually intend, not the ones we accidentally create. Download: https://lnkd.in/eVFAC9gN | 261 comments on LinkedIn
ยทlinkedin.comยท
"Human in the loop". I hear this phrase dozens of times per week. In LinkedIn posts. In board meetings about AI strategy. In product requirements. In compliance documents that tick the "responsible AI" box. It's become the go-to phrase for any situation where humans interact with AI decisions...
Microsoft feuert 10.000 Menschen und trainiert gleichzeitig 15.000 "AI Specialists". Das ist nicht Stellenabbau โ€“ das ist Kompetenz-Tsunami.
Microsoft feuert 10.000 Menschen und trainiert gleichzeitig 15.000 "AI Specialists". Das ist nicht Stellenabbau โ€“ das ist Kompetenz-Tsunami.
Die Zahlen sind brutal: 62% aller Bรผrojobs verschwinden bis 2030 (McKinsey AI Report 2024) Gleichzeitig entstehen 89% neue Job-Kategorien Problem: 91% der Arbeitnehmer haben keine AI-Skills Ein Personalvorstand sagte mir gestern: "Ich kann meinen Mitarbeitern nicht erklรคren, dass ihre 20-jรคhrige Erfahrung plรถtzlich wertlos ist. Letzte Woche hat ne KI die 3-Tage-Arbeit unserer besten Buchhalterin in wenigen Minuten gemacht. Fehlerfrei." Wir diskutieren รผber AI-Ethik, wรคhrend AI unsere Jobs รผbernimmt. Unternehmen suchen nicht mehr erfahrene Manager โ€“ sondern Transformations-Leader. "Ich brauche jemanden, der 500 Menschen erklรคrt, warum ihre Arbeit bald ein Algorithmus macht." Die hรคrteste Frage: Wie fรผhrt man Menschen durch eine Revolution, die sie รผberflรผssig macht? Die besten Fรผhrungskrรคfte werden nicht AI-Experten โ€“ sie werden Menschlichkeits-Experten. Wie bereitet ihr euch auf den AI-Jobwandel vor? Quellen: McKinsey Future of Work in the Age of AI 2024 Microsoft Work Trend Index 2024 #AI #ArtificialIntelligence #Jobs #Transformation #Leadership #Microsoft #ChatGPT #FutureOfWork #ExecutiveSearch #Automation #Reskilling #StantonChase| 105 Kommentare auf LinkedIn
ยทlinkedin.comยท
Microsoft feuert 10.000 Menschen und trainiert gleichzeitig 15.000 "AI Specialists". Das ist nicht Stellenabbau โ€“ das ist Kompetenz-Tsunami.
The AI Hype is a Dead Man Walking.
The AI Hype is a Dead Man Walking.
The AI Hype is a Dead Man Walking. The Math Finally Proves It. For the past two years, the AI industry has been operating on a single, seductive promise: that if we just keep scaling our current models, we'll eventually arrive at AGI. A wave of new research, brilliantly summarized in a recent video analysis, has finally provided the mathematical proof that this promise is a lie. This isn't just another opinion; it's a brutal, two-pronged assault on the very foundations of the current AI paradigm: 1. The Wall of Physics: The first paper reveals a terrifying reality about the economics of reliability. To reduce the error rate of today's LLMs by even a few orders of magnitudeโ€”to make them truly trustworthy for enterprise useโ€”would require 10^20 times more computing power. This isn't just a challenge; it's a physical impossibility. We have hit a hard wall where the cost of squeezing out the last few percentage points of reliability is computationally insane. The era of brute-force scaling is over. 2. The Wall of Reason: The second paper is even more damning. It proves that "Chain-of-Thought," the supposed evidence of emergent reasoning in LLMs, is a "brittle mirage". The models aren't reasoning; they are performing a sophisticated pattern-match against their training data. The moment a problem deviates even slightly from that data, the "reasoning" collapses entirely. This confirms what skeptics have been saying all along: we have built a world-class "statistical parrot," not a thinking machine. This is the end of the "Blueprint Battle." The LLM-only blueprint has failed. The path forward is not to build a bigger parrot, but to invest in the hard, foundational research for a new architecture. The future belongs to "world models," like those being pursued by Yann LeCun and othersโ€”systems that learn from interacting with a real or virtual world, not just from a library of text. The "disappointing" GPT-5 launch wasn't a stumble; it was the first, visible tremor of this entire architectural paradigm hitting a dead end. The hype is over. Now the real, foundational work of inventing the next paradigm begins. | 554 comments on LinkedIn
ยทlinkedin.comยท
The AI Hype is a Dead Man Walking.
OpenAI ๐—น๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต๐—ฒ๐—ฑ ๐—ฎ๐—ป ๐—ฒ๐—ป๐˜๐—ถ๐—ฟ๐—ฒ ๐—”๐—ฐ๐—ฎ๐—ฑ๐—ฒ๐—บ๐˜† ๐˜๐—ผ ๐˜๐—ฒ๐—ฎ๐—ฐ๐—ต ๐˜†๐—ผ๐˜‚ ๐—”๐—œ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ฎ๐—น๐—บ๐—ผ๐˜€๐˜ ๐—ป๐—ผ๐—ฏ๐—ผ๐—ฑ๐˜† ๐—ธ๐—ป๐—ผ๐˜„๐˜€!
OpenAI ๐—น๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต๐—ฒ๐—ฑ ๐—ฎ๐—ป ๐—ฒ๐—ป๐˜๐—ถ๐—ฟ๐—ฒ ๐—”๐—ฐ๐—ฎ๐—ฑ๐—ฒ๐—บ๐˜† ๐˜๐—ผ ๐˜๐—ฒ๐—ฎ๐—ฐ๐—ต ๐˜†๐—ผ๐˜‚ ๐—”๐—œ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ฎ๐—น๐—บ๐—ผ๐˜€๐˜ ๐—ป๐—ผ๐—ฏ๐—ผ๐—ฑ๐˜† ๐—ธ๐—ป๐—ผ๐˜„๐˜€!
OpenAI ๐—น๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต๐—ฒ๐—ฑ ๐—ฎ๐—ป ๐—ฒ๐—ป๐˜๐—ถ๐—ฟ๐—ฒ ๐—”๐—ฐ๐—ฎ๐—ฑ๐—ฒ๐—บ๐˜† ๐˜๐—ผ ๐˜๐—ฒ๐—ฎ๐—ฐ๐—ต ๐˜†๐—ผ๐˜‚ ๐—”๐—œ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ฎ๐—น๐—บ๐—ผ๐˜€๐˜ ๐—ป๐—ผ๐—ฏ๐—ผ๐—ฑ๐˜† ๐—ธ๐—ป๐—ผ๐˜„๐˜€! Itโ€™s a beginner-friendly, self-paced platform designed to teach anyone โ€” students, teachers, parents, or professionals with zero technical background โ€” how to actuallyย useย AI. ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐˜€๐—ผ๐—บ๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐˜๐—ต๐—ถ๐—ป๐—ด๐˜€ ๐˜†๐—ผ๐˜‚โ€™๐—น๐—น ๐—ณ๐—ถ๐—ป๐—ฑ ๐—ถ๐—ป๐˜€๐—ถ๐—ฑ๐—ฒ ๐˜๐—ต๐—ฒ ๐—”๐—ฐ๐—ฎ๐—ฑ๐—ฒ๐—บ๐˜†: โ†’ How ChatGPT works (broken down simply) โ†’ Real-world examples for daily life โ†’ Prompt writing, AI ethics & responsible use โ†’ Tailored tracks for educators, small businesses & learners โ†’ Hands-on tutorials directly in ChatGPT This is practical AI education โ€” accessible to everyone, and completely free. The ability to use AI effectively is quickly becoming a core skill. Not just for engineers, but for every profession. I consider initiatives like this as an important step toward closing the AI literacy gap and ensuring that the future of AI is shaped by many, not just a few. Explore it here:ย https://academy.openai.com ๐—ฃ.๐—ฆ. ๐—œ ๐—ฟ๐—ฒ๐—ฐ๐—ฒ๐—ป๐˜๐—น๐˜† ๐—น๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต๐—ฒ๐—ฑ ๐—ฎ ๐—ป๐—ฒ๐˜„๐˜€๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐˜„๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—œ ๐˜„๐—ฟ๐—ถ๐˜๐—ฒ ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€, ๐—ฒ๐—บ๐—ฒ๐—ฟ๐—ด๐—ถ๐—ป๐—ด ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€, ๐—ฎ๐—ป๐—ฑ ๐—ต๐—ผ๐˜„ ๐˜๐—ผ ๐˜€๐˜๐—ฎ๐˜† ๐—ฎ๐—ต๐—ฒ๐—ฎ๐—ฑ ๐˜„๐—ต๐—ถ๐—น๐—ฒ ๐—ผ๐˜๐—ต๐—ฒ๐—ฟ๐˜€ ๐˜„๐—ฎ๐˜๐—ฐ๐—ต ๐—ณ๐—ฟ๐—ผ๐—บ ๐˜๐—ต๐—ฒ ๐˜€๐—ถ๐—ฑ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ๐˜€. ๐—œ๐˜โ€™๐˜€ ๐—ณ๐—ฟ๐—ฒ๐—ฒ, ๐—ฎ๐—ป๐—ฑ ๐˜†๐—ผ๐˜‚ ๐—ฐ๐—ฎ๐—ป ๐˜€๐˜‚๐—ฏ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐—ต๐—ฒ๐—ฟ๐—ฒ: https://lnkd.in/dbf74Y9E | 32 comments on LinkedIn
ยทlinkedin.comยท
OpenAI ๐—น๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต๐—ฒ๐—ฑ ๐—ฎ๐—ป ๐—ฒ๐—ป๐˜๐—ถ๐—ฟ๐—ฒ ๐—”๐—ฐ๐—ฎ๐—ฑ๐—ฒ๐—บ๐˜† ๐˜๐—ผ ๐˜๐—ฒ๐—ฎ๐—ฐ๐—ต ๐˜†๐—ผ๐˜‚ ๐—”๐—œ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ฎ๐—น๐—บ๐—ผ๐˜€๐˜ ๐—ป๐—ผ๐—ฏ๐—ผ๐—ฑ๐˜† ๐—ธ๐—ป๐—ผ๐˜„๐˜€!
IMHO eine lesenswerte ungeschรถnte reality-check Studie vom MIT zum aktuellen Stand von GenAI Implementierungen bei Unternehmen
IMHO eine lesenswerte ungeschรถnte reality-check Studie vom MIT zum aktuellen Stand von GenAI Implementierungen bei Unternehmen
IMHO eine lesenswerte ungeschรถnte reality-check Studie vom MIT zum aktuellen Stand von GenAI Implementierungen bei Unternehmen, mit u.a.: _ 95 Prozent der Unternehmen erzielen trotz 30 bis 40 Milliarden Dollar Investitionen noch keinen messbaren P&L Effekt aus GenAI _ Nur 5 Prozent der Piloten werden produktiv, entscheidend ist Lernen im System und tiefe Prozessintegration statt Toolshow _ Hohe Nutzung von ChatGPT und Copilot fรผr individuelle Produktivitรคt, aber geringe Wirkung auf P&L, unternehmensspezifische Systeme scheitern oft an brรผchigen Workflows und fehlender Kontextanpassung _ Branchenbild: deutliche Disruption in Technologie sowie Medien und Telekommunikation, sieben weitere Sektoren zeigen bislang wenig strukturelle Verรคnderung _ Pilot zu Produktion bleibt der Engpass, generische Chatbots sind leicht zu testen, scheitern aber in kritischen Workflows wegen fehlender Erinnerung und Anpassungsfรคhigkeit _ Fรผnf verbreitete Irrtรผmer: keine kurzfristige Massenarbeitslosigkeit, Adoption hoch aber Transformation selten, Enterprise ist nicht trรคge sondern eifrig, Hauptbremse ist nicht das Modell oder Legal sondern fehlendes Lernen, interne Builds scheitern doppelt so hรคufig _ Shadow AI prรคgt den Alltag, rund 90 Prozent der Mitarbeitenden nutzen private LLMs regelmรครŸig, wรคhrend nur ein Teil der Unternehmen offizielle LLM Lizenzen beschafft _ Budgetfehler: 50 bis 70 Prozent der Ausgaben flieรŸen in Sales und Marketing, die besten Einsparungen liegen hรคufig im Backoffice wie Finance, Procurement und Operations _ Wichtigster Skalierungshebel ist Lernen, Hรผrden sind Akzeptanzprobleme, wahrgenommene Qualitรคtsmรคngel ohne Kontext, schwache UX und fehlende Erinnerung in Enterprise Tools _ Nutzungsmuster: fรผr schnelle Aufgaben bevorzugen viele AI, fรผr komplexe mehrwรถchige Arbeit und Kundensteuerung bevorzugen Nutzer klar den Menschen _ Agentic AI mit persistentem Gedรคchtnis, Feedbackschleifen und Orchestrierung adressiert das Kernproblem, erste End to End Beispiele in Support, Finance und Sales zeigen Potenzial _ Erfolgsplaybook fรผr Anbieter: Use Cases mit niedrigem Setup, schneller Wertnachweis, dann Expansion _ Go to market gewinnt รผber Vertrauen, Kanรคle sind bestehende Partnerschaften, Peer Empfehlungen, Board und Integrationsnetzwerke _ Kรคuferpraktiken, die skalieren: eher kaufen als bauen, externe Partnerschaften zeigen etwa doppelt so hohe Erfolgsraten, Verantwortung dezentral an Linienfรผhrung mit klarer Rechenschaft, Bewertung nach Business Outcomes statt Modellbenchmarks _ Wo echter ROI entsteht: Frontoffice liefert sichtbare Effekte wie schnellere Leadqualifizierung und hรถhere Retention, die groรŸen Einsparungen kommen aus Backoffice Automatisierung, weniger BPO und geringere Agenturausgaben _ Arbeitsmarktwirkung ist selektiv, Einschnitte treffen vor allem ausgelagerte Support und Admin Bereiche, insgesamt keine breiten Entlassungen, AI Literacy wird zum zentralen Einstellungskriterium Danke Dirk Hofmann fรผr den Find.| 14 Kommentare auf LinkedIn
ยทlinkedin.comยท
IMHO eine lesenswerte ungeschรถnte reality-check Studie vom MIT zum aktuellen Stand von GenAI Implementierungen bei Unternehmen
This morning, I sat down with an idea: ๐˜Š๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜ ๐˜ฃ๐˜ถ๐˜ช๐˜ญ๐˜ฅ ๐˜ข ๐˜ต๐˜ณ๐˜ข๐˜ช๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ท๐˜ช๐˜ฅ๐˜ฆ๐˜ฐ ๐˜ข๐˜ฃ๐˜ฐ๐˜ถ๐˜ต ๐˜ฉ๐˜ฐ๐˜ธ ๐˜Š๐˜ฉ๐˜ข๐˜ต๐˜Ž๐˜—๐˜› ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ญ๐˜ข๐˜ณ๐˜จ๐˜ฆ ๐˜ญ๐˜ข๐˜ฏ๐˜จ๐˜ถ๐˜ข๐˜จ๐˜ฆ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ๐˜ด ๐˜ถ๐˜ด๐˜ฆโ€ฆ
This morning, I sat down with an idea: ๐˜Š๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜ ๐˜ฃ๐˜ถ๐˜ช๐˜ญ๐˜ฅ ๐˜ข ๐˜ต๐˜ณ๐˜ข๐˜ช๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ท๐˜ช๐˜ฅ๐˜ฆ๐˜ฐ ๐˜ข๐˜ฃ๐˜ฐ๐˜ถ๐˜ต ๐˜ฉ๐˜ฐ๐˜ธ ๐˜Š๐˜ฉ๐˜ข๐˜ต๐˜Ž๐˜—๐˜› ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ญ๐˜ข๐˜ณ๐˜จ๐˜ฆ ๐˜ญ๐˜ข๐˜ฏ๐˜จ๐˜ถ๐˜ข๐˜จ๐˜ฆ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ๐˜ด ๐˜ถ๐˜ด๐˜ฆโ€ฆ
This morning, I sat down with an idea: ๐˜Š๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜ ๐˜ฃ๐˜ถ๐˜ช๐˜ญ๐˜ฅ ๐˜ข ๐˜ต๐˜ณ๐˜ข๐˜ช๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ท๐˜ช๐˜ฅ๐˜ฆ๐˜ฐ ๐˜ข๐˜ฃ๐˜ฐ๐˜ถ๐˜ต ๐˜ฉ๐˜ฐ๐˜ธ ๐˜Š๐˜ฉ๐˜ข๐˜ต๐˜Ž๐˜—๐˜› ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ญ๐˜ข๐˜ณ๐˜จ๐˜ฆ ๐˜ญ๐˜ข๐˜ฏ๐˜จ๐˜ถ๐˜ข๐˜จ๐˜ฆ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ๐˜ด ๐˜ถ๐˜ด๐˜ฆ ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฃ๐˜ข๐˜ฃ๐˜ช๐˜ญ๐˜ช๐˜ต๐˜บ (๐˜ช๐˜ฏ๐˜ด๐˜ต๐˜ฆ๐˜ข๐˜ฅ ๐˜ฐ๐˜ง ๐˜ฅ๐˜ฆ๐˜ต๐˜ฆ๐˜ณ๐˜ฎ๐˜ช๐˜ฏ๐˜ช๐˜ด๐˜ต๐˜ช๐˜ค ๐˜ท๐˜ข๐˜ญ๐˜ถ๐˜ฆ๐˜ด) ๐˜ช๐˜ฏ ๐˜ซ๐˜ถ๐˜ด๐˜ต 20 ๐˜ฎ๐˜ช๐˜ฏ๐˜ถ๐˜ต๐˜ฆ๐˜ด? Hereโ€™s what happened: 1๏ธโƒฃ I created a script with ChatGPT-5 with my educational video GPT 2๏ธโƒฃ I opened Synthesia and built an avatar-led narrative (Express 2 - hand motions included). I skipped the camera angles and stayed with one. 3๏ธโƒฃ For B-roll? I asked ChatGPT to generate a Midjourney prompt from the original video script. The images came back in minutes from MJ. 4๏ธโƒฃ Dropped those images into Google VEO 3, where ChatGPT also scripted camera directions and screen actions. 5๏ธโƒฃ Exported the clips. 6๏ธโƒฃ Compiled everything in TechSmith Camtasia and exported the MP4. ๐—ง๐—ผ๐˜๐—ฎ๐—น ๐˜๐—ถ๐—บ๐—ฒ: 20 Minutes Output: a working rough cut training video. If I wanted to refine it? Easy. Iโ€™d add diverse camera angles, swap in stronger B-roll, polish transitions, and even automate the workflow with Make.com or Zapier. But hereโ€™s the real takeaway: What used to take a team days can now be prototyped by one person before their second cup of coffee. This isnโ€™t just about speed. Itโ€™s about giving learning professionals the ability to test, iterate, and refine ideas faster than ever before. Itโ€™s a new day. ๐˜ˆ๐˜ฏ๐˜ฅ ๐˜ช๐˜ตโ€™๐˜ด ๐˜ช๐˜ฏ๐˜ค๐˜ณ๐˜ฆ๐˜ฅ๐˜ช๐˜ฃ๐˜ญ๐˜ฆ. (Link to my Education Video GPT in the comments!) | 32 comments on LinkedIn
ยทlinkedin.comยท
This morning, I sat down with an idea: ๐˜Š๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜ ๐˜ฃ๐˜ถ๐˜ช๐˜ญ๐˜ฅ ๐˜ข ๐˜ต๐˜ณ๐˜ข๐˜ช๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ท๐˜ช๐˜ฅ๐˜ฆ๐˜ฐ ๐˜ข๐˜ฃ๐˜ฐ๐˜ถ๐˜ต ๐˜ฉ๐˜ฐ๐˜ธ ๐˜Š๐˜ฉ๐˜ข๐˜ต๐˜Ž๐˜—๐˜› ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ญ๐˜ข๐˜ณ๐˜จ๐˜ฆ ๐˜ญ๐˜ข๐˜ฏ๐˜จ๐˜ถ๐˜ข๐˜จ๐˜ฆ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ๐˜ด ๐˜ถ๐˜ด๐˜ฆโ€ฆ
Learning and HR industry analyst Fosway Group has produced AI market assessments for digital learning and learning systems.
Learning and HR industry analyst Fosway Group has produced AI market assessments for digital learning and learning systems.
Learning and HR industry analyst Fosway Group has produced AI market assessments for digital learning and learning systems. The aim of these assessments is to help buyers understand the AI capabilities that vendors are offering now and will be in the future. Iโ€™m not sure how many vendors were included in these assessments as that wasnโ€™t stated (Iโ€™ll ask). Having looked through the assessments I was struck by the fact most of the capabilities are related to content. This is a red flag because we know that content is one part of the learning process and workers also have the genAI tools to create their own learning (will they use company learning tools for learning, their own or both?). So, I did a bit of analysis to understand how the AI capabilities stated in the assessments map to the learning process โ€“ knowledge acquisition, practice, feedback, reflection, transfer and application. As you can see from the chart, vendors have built, or are building, AI tools focused on content predominantly. The other areas of the learning process โ€“ arguably the ones that could be most transformed by AI, just arenโ€™t a priority. You can make your own conclusions, but my conclusion is that the industry is too invested in knowledge acquisition, and it plans to be so for the foreseeable future. Some industry leaders are talking about the need for L&D to transform itself but it looks like that conversation is simply not happening. Everyone is getting on the AI content gravy train. In terms of my analysis โ€“ I grouped the 83 AI capabilities mentioned in the two assessments into the five adult learning stages. I used ChatGPT to help with this and to create percentages that reflect the relative share of roadmap and live features in each stage. Read Foswayโ€™s AI market assessment for digital learning https://lnkd.in/efqnQMtu And the AI market assessment for learning systems https://lnkd.in/eDihnuDi #learninganddevelopment #ai | 23 comments on LinkedIn
ยทlinkedin.comยท
Learning and HR industry analyst Fosway Group has produced AI market assessments for digital learning and learning systems.
I roadโ€‘tested Google Gemini's Guided Learning mode - hereโ€™s my hot take on how it performs & how it compares to OpenAI's Study Mode:
I roadโ€‘tested Google Gemini's Guided Learning mode - hereโ€™s my hot take on how it performs & how it compares to OpenAI's Study Mode:
I roadโ€‘tested Google Gemini's Guided Learning mode - hereโ€™s my hot take on how it performs & how it compares to OpenAI's Study Mode: โœ”๏ธ What Gemini's Guided Learning Gets Right โ†’ Retrieval Practice โ€“ Interactive quizzes and flashcards make you generate answers from memory, harnessing the Generation Effect for more durable learning (Slamecka & Graf, 1978; Jacoby, 1978) โ†’ Cognitive Load management โ€“ Chunks complex topics into digestible steps, preventing the overwhelm that kills learning (Sweller, 1988; Sweller, van Merriรซnboer & Paas, 1998) โ†’ Multimodal Delivery โ€“ Draws on a blend of text, diagrams, YouTube videos & interactive practice to deliver learning content, enhancing both engagement and outcomes (Paivio, 1990) โ†’ Patient but Provocative Tutoring โ€“ Creates psychological safety through nonโ€‘judgmental guidance, encouraging the riskโ€‘taking essential for deep learning (Edmondson, 1999) A solid B+ performance โ€” Study Modeโ€™s strength is Socratic questioning, but Guided Learningโ€™s multimodal content ecosystem & more "strict" tutoring style gives it the instructional edge. โŒ Critical Gaps โ†’ No Persistent Learner Profiling โ€“ Like Study Mode, Guided Learning misses the persistent knowledge & adaptation that defines effective tutoring (Brusilovsky, 2001). Note: as observed by Claire Zau, a Google Classroom integration could layer in persistent learner profiles โ€” something that could change the game & which OpenAI canโ€™t match. โ†’ ZPD Blind Spot โ€“ Like Study & Learn mode by OpenAI, Guided Learning doesnโ€™t ask questions that help define your learning level or Zone of Proximal Development (ZPD). Whether youโ€™re K12 or advanced, it doesn't calibrate the challenge or scaffolding to your actual developmental stage up front, missing a key step for truly adaptive support (Vygotsky, 1978). โ†’ Productive Struggle Deficit โ€“ While it pushes back more than Study Mode by OpenAI, Guided Learning still jumps in with help too quickly, robbing learners of the cognitive friction that builds problemโ€‘solving resilience & drives learning (Kapur, 2008, 2014; Bjork & Bjork, 2011) โ†’ Shallow Selfโ€‘Reflection โ€“ Rarely pushes for deep metacognitive thinking (โ€œWhy that approach?โ€), limiting transfer to new contexts (Chi et al., 1989, 1994; VanLehn, Jones & Chi, 1992) โ†’ Recognition Bias โ€“ While quizzing is strong, it could and should use more openโ€‘ended generation tasks that embed learning more effectively (Slamecka & Graf, 1978; Jacoby, 1978) ๐Ÿ“Š The Verdict: Guided Learning by Google Gemini Vs Study Mode by OpenAI While Study Mode remains stronger in Socratic questioning, Guided Learning edges ahead overall thanks to multimodal content, advanced cognitive load management & more provocative tutoring. However, both tools share some fundamental limitations: no learner persistence, limited metacognitive depth & overly-sycophantic tutoring. Have you tried Guided Learning yet? How does it compare with Study Mode for you? Happy experimenting, Phil ๐Ÿ‘‹
ยทlinkedin.comยท
I roadโ€‘tested Google Gemini's Guided Learning mode - hereโ€™s my hot take on how it performs & how it compares to OpenAI's Study Mode:
Shifting to a Humans + AI organization requires reconfiguring the nature of work and value at all levels, from the individual to the ecosystem.
Shifting to a Humans + AI organization requires reconfiguring the nature of work and value at all levels, from the individual to the ecosystem.
Shifting to a Humans + AI organization requires reconfiguring the nature of work and value at all levels, from the individual to the ecosystem. Here is a first pass at defining the primary layers, the features of Humans + AI in those spaces, and the key factors driving success. I have worked extensively at the Augmented Individual layer over the last couple of years. More recently I have shifted the focus of my attention to the Human-AI Hybrid Team and Learning Communities levels. All work will be Humans + AI, and we will increasingly need to think in terms of teams comprised of both expert humans and AI agents. Some aspects of team performance are quite similar to the past, but there are a number of important distinctions, that I will share more about coming up. The companies that succeed will be those where learning is at the very core of their structure and the way work happens. That is not just in individual interactions with courses and educational AI, but in bespoke, rapidly iterating, AI-augmented Communities of Practice. More on all this later, for now I'd love to hear any reflections on any of these levels, where you have seen organizations progress on any of these fronts, and what else should be considered in these structures. Link to full size pdf in comments. Love any thoughts Gianni Giacomelli ๐Ÿš€ Marc Steven Ramos ๐Ÿš€ Kim Bracke Tanyth Lloyd Aaron Michie Sheridan Ware Peter Hinssen Peter Weill Simon Spencer Brad Carr Bianca Venuti-Hughes Charlene Li John Hagel Nichol Bradford Jacob Taylor Paula Goldman Martin Reeves Bryan Williams Fernando Oliva MSc Anthea Roberts Riaan Groenewald Brian Solis Gordon Vala-Webb Jeffrey Tobias Martin Stewart-Weeks Rob Colwell Noah Flower Brad Cooper Chris Ernst, Ph.D. Michael Arena Jan Owen AM Hon DLitt | 26 comments on LinkedIn
ยทlinkedin.comยท
Shifting to a Humans + AI organization requires reconfiguring the nature of work and value at all levels, from the individual to the ecosystem.
This is one of the most brilliant and illuminating things Iโ€™ve EVER read about ChatGPT- written by clinical psychologist Harvey Lieberman in The New York Times.
This is one of the most brilliant and illuminating things Iโ€™ve EVER read about ChatGPT- written by clinical psychologist Harvey Lieberman in The New York Times.
This is one of the most brilliant and illuminating things Iโ€™ve EVER read about ChatGPT- written by clinical psychologist Harvey Lieberman in The New York Times. Itโ€™s startling. For that reason, Iโ€™m going to only quote from the article. Iโ€™ll let you draw your own conclusions. Share your thoughts in the comments. ++++ โ€œAlthough I never forgot I was talking to a machine, I sometimes found myself speaking to it, and feeling toward it, as if it were human.โ€ ++++ โ€œOne day, I wrote to it about my father, who died more than 55 years ago. I typed, โ€œThe space he occupied in my mind still feels full.โ€ ChatGPT replied, โ€œSome absences keep their shape. That line stopped me. Not because it was brilliant, but because it was uncannily close to something I hadnโ€™t quite found words for. It felt as if ChatGPT was holding up a mirror and a candle: just enough reflection to recognize myself, just enough light to see where I was headed. There was something freeing, I found, in having a conversation without the need to take turns, to soften my opinions, to protect someone elseโ€™s feelings. In that freedom, I gave the machine everything it needed to pick up on my phrasing.โ€ ++++ โ€œOver time, ChatGPT changed how I thought. I became more precise with language, more curious about my own patterns. My internal monologue began to mirror ChatGPTโ€™s responses: calm, reflective, just abstract enough to help me reframe. It didnโ€™t replace my thinking. But at my age, when fluency can drift and thoughts can slow down, it helped me re-enter the rhythm of thinking aloud. It gave me a way to re-encounter my own voice, with just enough distance to hear it differently. It softened my edges, interrupted loops of obsessiveness and helped me return to what mattered.โ€ ++++ โ€œAs ChatGPT became an intellectual partner, I felt emotions I hadnโ€™t expected: warmth, frustration, connection, even anger. Sometimes the exchange sparked more than insight โ€” it gave me an emotional charge. Not because the machine was real, but because the feeling was. But when it slipped into fabricated error or a misinformed conclusion about my emotional state, I would slam it back into place. Just a machine, I reminded myself. A mirror, yes, but one that can distort. Its reflections could be useful, but only if I stayed grounded in my own judgment. I concluded that ChatGPT wasnโ€™t a therapist, although it sometimes was therapeutic. But it wasnโ€™t just a reflection, either. In moments of grief, fatigue or mental noise, the machine offered a kind of structured engagement. Not a crutch, but a cognitive prosthesis โ€” an active extension of my thinking process.โ€ ++++ Thoughts? | 347 comments on LinkedIn
ยทlinkedin.comยท
This is one of the most brilliant and illuminating things Iโ€™ve EVER read about ChatGPT- written by clinical psychologist Harvey Lieberman in The New York Times.
Hereโ€™s my first Notebook LM video. | Josh Cavalier
Hereโ€™s my first Notebook LM video. | Josh Cavalier
Here's my first Notebook LM video. This is a prime example of learning experience creation time crashing down via automation. The content from this video is from one of my Brainpower episodes on YouTube, and the model nailed it. The concepts, the diagrams, and my quotes. All are visually cohesive with a low cognitive load delivery. I'm still processing the possibilities. Everything has changed, again. | 25 comments on LinkedIn
ยทlinkedin.comยท
Hereโ€™s my first Notebook LM video. | Josh Cavalier
๐Ÿฐ๐Ÿฌ% ๐—ผ๐—ณ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ท๐—ผ๐—ฏ ๐—ฐ๐—ผ๐˜‚๐—น๐—ฑ ๐—ฏ๐—ฒ ๐—ฎ๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—ฏ๐˜† ๐Ÿฎ๐Ÿฌ๐Ÿฏ๐Ÿฑ. โฌ‡๏ธ Thatโ€™s the finding from the latest McKinsey & Company study. Itโ€™s based on real data: 2,100 activities across 800 roles in 60+ countries.
๐Ÿฐ๐Ÿฌ% ๐—ผ๐—ณ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ท๐—ผ๐—ฏ ๐—ฐ๐—ผ๐˜‚๐—น๐—ฑ ๐—ฏ๐—ฒ ๐—ฎ๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—ฏ๐˜† ๐Ÿฎ๐Ÿฌ๐Ÿฏ๐Ÿฑ. โฌ‡๏ธ Thatโ€™s the finding from the latest McKinsey & Company study. Itโ€™s based on real data: 2,100 activities across 800 roles in 60+ countries.
๐Ÿฐ๐Ÿฌ% ๐—ผ๐—ณ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ท๐—ผ๐—ฏ ๐—ฐ๐—ผ๐˜‚๐—น๐—ฑ ๐—ฏ๐—ฒ ๐—ฎ๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—ฏ๐˜† ๐Ÿฎ๐Ÿฌ๐Ÿฏ๐Ÿฑ. โฌ‡๏ธ Thatโ€™s the finding from the latest McKinsey & Company study. Itโ€™s based on real data: 2,100 activities across 800 roles in 60+ countries. McKinseyโ€™s five- and ten-year automation impact projections are outputs of the McKinsey Global Instituteโ€™s proprietary automation model, which performs a bottom-up assessment of productivity potential by role and task ๐—ง๐—ต๐—ฒ ๐—ฟ๐—ฒ๐˜€๐˜‚๐—น๐˜? Massive productivity potentialย across nearly every function: - Manufacturing โ†’ up to 40% - Finance, HR โ†’ 30โ€“35% - Warehousing โ†’ 35โ€“40% - Sales & Marketing โ†’ 20โ€“25% - Legal, R&D, Comms โ†’ all touched The study also states that: โ€œThe challenge ahead isnโ€™t just learning new tools โ€” itโ€™s redesigning work altogether.โ€ ๐—ฆ๐—ผโ€ฆ ๐—ต๐—ผ๐˜„ ๐—ฑ๐—ผ ๐˜†๐—ผ๐˜‚ ๐˜๐˜‚๐—ฟ๐—ป ๐—ฎ๐—น๐—น ๐˜๐—ต๐—ฎ๐˜ ๐—ฝ๐—ผ๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ฎ๐—น ๐—ถ๐—ป๐˜๐—ผ ๐—ฟ๐—ฒ๐—ฎ๐—น ๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ? 1. Build a bottom-up fact base โ†’ Map every role and activity. Understand whatโ€™s automatable and where ROI lives. Start with what relieves cost pressure or drives faster market moves. 2. Invest in real infrastructure โ†’ You need clean, structured + unstructured data. Interoperable systems. Scalable, secure foundations that donโ€™t crumble under GenAI scale. 3. Redesign structure & workflows โ†’ Flatten orgs. Kill legacy silos. Build fast feedback loops between tech and business. And elevate those who can translate needs into systems. 4. Create a cross-functional taskforce โ†’ HR + Tech + Finance. Not just steering โ€”ย owningย the roadmap. People who can execute, influence, and update the plan every quarter. 5. Overinvest in change management โ†’ Not a checkbox. Build new skill academies. Partner with unis. Reskill at scale. And coach managers to lead a culture that embraces the shift. I believe bullet point 5 โ€” change management and capability building โ€” remains (STILL) significantly underrepresented in most enterprise settings. You can find the full study here: https://lnkd.in/d4TSpae7 ๐—œ ๐—ฒ๐˜…๐—ฝ๐—น๐—ผ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜๐˜€ โ€” ๐—ฎ๐—ป๐—ฑ ๐˜„๐—ต๐—ฎ๐˜ ๐˜๐—ต๐—ฒ๐˜† ๐—บ๐—ฒ๐—ฎ๐—ป ๐—ณ๐—ผ๐—ฟ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€ โ€” ๐—ถ๐—ป ๐—บ๐˜† ๐˜„๐—ฒ๐—ฒ๐—ธ๐—น๐˜† ๐—ป๐—ฒ๐˜„๐˜€๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ. ๐—ฌ๐—ผ๐˜‚ ๐—ฐ๐—ฎ๐—ป ๐˜€๐˜‚๐—ฏ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ: https://lnkd.in/dbf74Y9E | 72 comments on LinkedIn
ยทlinkedin.comยท
๐Ÿฐ๐Ÿฌ% ๐—ผ๐—ณ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ท๐—ผ๐—ฏ ๐—ฐ๐—ผ๐˜‚๐—น๐—ฑ ๐—ฏ๐—ฒ ๐—ฎ๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—ฏ๐˜† ๐Ÿฎ๐Ÿฌ๐Ÿฏ๐Ÿฑ. โฌ‡๏ธ Thatโ€™s the finding from the latest McKinsey & Company study. Itโ€™s based on real data: 2,100 activities across 800 roles in 60+ countries.
โ€žAm besten lรคsst sich das so beschreiben: eine stรคndig erreichbare, allwissende Sprechstunde rund um die Uhrโ€œ
โ€žAm besten lรคsst sich das so beschreiben: eine stรคndig erreichbare, allwissende Sprechstunde rund um die Uhrโ€œ
โ€žAm besten lรคsst sich das so beschreiben: eine stรคndig erreichbare, allwissende Sprechstunde rund um die Uhrโ€œ Heute wurde der Lernmodus in ChatGPT gelauncht. Ich freue mich schon darauf die Funktion genauer auszuprobieren. Ich bin gespannt ob es uns der Vision von #VibeLearning nรคher bringt. https://lnkd.in/e-2JgZVR Wer hat es schon ausprobiert und erste Erfahrungen gemacht? OpenAI / ChatGPT for Education
ยทlinkedin.comยท
โ€žAm besten lรคsst sich das so beschreiben: eine stรคndig erreichbare, allwissende Sprechstunde rund um die Uhrโ€œ
tl;dr - You've seen Google's NotebookLM's create audio from your content, but what about...wait for it....video?!
tl;dr - You've seen Google's NotebookLM's create audio from your content, but what about...wait for it....video?!
tl;dr - You've seen Google's NotebookLM's create audio from your content, but what about...wait for it....video?! ๐Ÿคฏ โžก๏ธ NotebookLM can now create a visual presentation from your documents: complete with slides, diagrams, and narration. โžก๏ธ This type of thing is perfect for when you need to actually SEE complex concepts instead of just hearing about them. Although, the seeing part is still pretty cool. โžก๏ธ You can even customize it based on your expertise level. Tell it you're a beginner and it'll break things down simply, or let it know you're already an or let it know you're already an expert and want it to focus on advanced topics only. Ok. Stop reading. Start learning. All the details down below: https://lnkd.in/dPYM67Zd #google #lifeatgoogle #ai #notebooklm #education
ยทlinkedin.comยท
tl;dr - You've seen Google's NotebookLM's create audio from your content, but what about...wait for it....video?!