New research finally offers a robust answer to the question, "Does using AI make our Instructional Designs BETTER, or just faster?"
๐ In a controlled test, 27 Instructional Design postgrads at Carnegie Mellon created designs both with & without GPT-4 assistance.
๐ Every design was blind-scored on quality by expert instructors.
๐The result: Design with AI was not not just faster, but produced better quality designs in 100% of the cases.
But the detail is where it gets interesting...๐
The research also revealed a "capability frontier"โa clear boundary between where AI helps Instructional Design quality most, and where it might actually compromise it.
TLDR:
๐ USE AI FOR: Designs which use well-established design methodologies, step-by-step processes & widely-discussed topics.
โ BE MORE CAUTIOUS WHEN USING AI FOR: Designs on niche, novel & complex topics which use less well-established design methodologies.
๐กBonus insight: In line with broader research on the impact of AI on knowledge work, the research also suggests that novice Instructional Designers benefit *most* from AI design assistance (but only when we are strict on what sorts of tasks they use it for).
To learn more about the research & what it tells us about how to work with AI in our day to day work, check out my latest blog post (link in comments).
Happy innovating!
Phil ๐
ByteBot OS: First-Ever AI Operating System IS INSANE! (Opensource)
Meet ByteBot OS โ the first-ever open-source & self-hosted AI Operating System!๐ My Links:Sponsor a Video or Do a Demo of Your Product, Contact me: inthewor...
There are massive disparities in how people view AI, in their degree of nervousness, excitement, trust in systems, and personal impact. This updated Ipsos AI Monitor 2025 shares many fascinating insights.
English-speaking countries remain the most nervous and unexcited, with Asia dominating as most positive nations.
The second chart I've shared here is interesting, in that while people are relatively positive about the impact of AI on their job and also the economy, they are considerably less positive about the impact of AI on the job market.
Not surprisingly, those nations that believe AI will benefit the economy are most likely to be excited.
The global average for believing AI will profoundly change their life in the next 3-5 years is 67%, ranging from 52% in Britain to 84% in Indonesia. So most people
Of course, if people believe AI will profoundly change their lives there is likely cause for at least some nervousness and hopefully also excitement.
Where the balance lies in a nation, and within any specific organization, must shape governance and change initiatives to maximize good cause for excitement and minimize cause for nervousness.
Because it is a wild ride.
The top priority for most leaders is integrating AI into the business. And AI itself is transforming leadership and leadership development.
Some great insights in this report from Harvard Business Review, particularly interesting to me, not only as much of my work is in client leadership development, but also the reality that effective leadership will be critical in us navigating the challenging path to prosperous Humans + AI organizations.
Not surprisingly, 55% of survey respondents said incorporating GenAI into business practices is their #1 priority this year.
To support that, the top human capital project - at 53% - is adopting or expanding AI-based talent management.
The real headline is that over 80% of HR leaders expect that every level of leader will spend more time on leadership development this year, in many cases significantly more. The question is: how to design the programs and the time spent to result in true expansion of leadership capabilities.
"Speed to skill is the metric in focus". Which requires a very different, intrinsically Humans + AI approach:
"In a two-way information exchange, AI is fed an organizationโs domain-specific knowledge and humans access AI-generated learning resources based on that knowledge. AI systems learn from human inputs, improving over time, while humans gain insights from AI-generated data. Properly done, these efforts can build the collective intelligence of humans and machines, enhancing the organizationโs ability to solve complex problems and adapt to changing environments."
A lot more in the report.
What is clear is that in an accelerating world leadership development is more important than ever, both to address AI-driven change, and supported by AI.
Introduction to AI Safety, Ethics, and Society | Peter Slattery, PhD | 10 comments
๐ข Free Book: "Introduction to AI Safety, Ethics, and Societyย is a free online textbook by Center for AI Safety Executive Directorย Dan Hendrycks. It is designed to be accessible for a non-technical audience and integrates insights from a range of disciplines to cover how modern AI systems work, technical and societal challenges we face in ensuring that these systems are developed safely, and strategies for effectively managing risks from AI whileย capturingย its benefits.
This bookย has been endorsed by leading AIย researchers, includingย Yoshua Bengioย andย Boaz Barak,ย and has already been used to teach over 500 students through ourย virtual course. It is available at no cost inย downloadable textย andย audiobookย formats, as well as in print fromย Taylor & Francis. We also offer lecture slides and other supplementary resources for educators on ourย website."
Thanks to Connor Smith for sharing this with me. Due to file limit issues, I have only attached the first 17 pages of the much larger textbook. See link in comments.
| 10 comments on LinkedIn
Der KI-Filmemacher Alex Patrascu zeigt in folgendem Video, wie aus Gemรคlden ganze Szene entstehen, die dann zusammengefรผhrt werden
Die Bilder wurden KI-generiert, dann in Videos mit รbergรคngen animiert und am Schluss noch ein Audio drรผbergelegt. Zack, fertig ist der Short Movie. Dies wirkt schon fast wie eine Sitcom mit Mona Lisa, Van Gogh & Co.
Zum Linkedin-Beitrag
https://lnkd.in/enY82ifv
Appleโs latest announcement is worth paying attention to. Theyโve just introduced an AI model that doesnโt need the cloud โ it runs straight in your browser.
The specs are impressive:
Up to 85x faster
3.4x smaller footprint
Real-time performance directly in-browser
Capable of live video captioning โ fully local
No external infrastructure. No latency. No exposure of sensitive data.
Simply secure, on-device AI.
Yes, the technical benchmarks will be debated. But the bigger story is Appleโs positioning. This is about more than numbers โ itโs about shaping a narrative where AI is personal, private, and seamlessly integrated.
At Copenhagen Institute for Futures Studies, weโve been tracking the rise of small-scale, locally running AI models for some time. We believe this shift has the potential to redefine how organizations and individuals interact with intelligent systems โ moving AI from โout thereโ in the cloud to right here, at the edge. | 10 comments on LinkedIn
Apertus: Ein vollstรคndig offenes, transparentes und mehrsprachiges Sprachmodell
Die EPFL, die ETH Zรผrich und das Schweizerische Supercomputing-Zentrum CSCS haben heute Apertus verรถffentlicht: Das erste umfangreiche, offene und mehrsprachige Sprachmodell aus der Schweiz. Damit setzen sie einen Meilenstein fรผr eine transparente und vielfรคltige generative KI.
The full report is being presented from 2โ4 September at UNESCOโs Digital Learning Week 2025 in Paris. Itโs a must-read for anyone interested in learning, technology, and the future of education โ packed with insights and practical perspectives.
๐ง๐ต๐ฒ ๐ฟ๐ฒ๐ฝ๐ผ๐ฟ๐ ๐ฐ๐ผ๐๐ฒ๐ฟ๐ ๐๐ต๐ฒ ๐ณ๐ผ๐น๐น๐ผ๐๐ถ๐ป๐ด ๐ฎ๐ฟ๐ฒ๐ฎ๐: โฌ๏ธย
๐ญ.ย ๐๐ ๐ณ๐๐๐๐ฟ๐ฒ๐ ๐ถ๐ป ๐ฒ๐ฑ๐๐ฐ๐ฎ๐๐ถ๐ผ๐ป: ๐ฃ๐ต๐ถ๐น๐ผ๐๐ผ๐ฝ๐ต๐ถ๐ฐ๐ฎ๐น ๐ฝ๐ฟ๐ผ๐๐ผ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐
โ AI futures arenโt just about intelligence scores โ they push us to rethink what โknowingโ really means. And the whole debate isnโt only technical but philosophical: how do we define learning, progress, and human identity in an AI age?
๐ฎ. ๐๐ฒ๐ฏ๐ฎ๐๐ถ๐ป๐ด ๐๐ต๐ฒ ๐ฝ๐ผ๐๐ฒ๐ฟ๐ ๐ฎ๐ป๐ฑ ๐ฝ๐ฒ๐ฟ๐ถ๐น๐ ๐ผ๐ณ ๐๐
โ AI in schools and universities is not inevitable โ education systems have choices, agency, and the power to shape direction. The core tension here: opportunity for reinvention vs. risks of over-automation and cultural bias.
๐ฏ. ๐๐ ๐ฝ๐ฒ๐ฑ๐ฎ๐ด๐ผ๐ด๐ถ๐ฒ๐, ๐ฎ๐๐๐ฒ๐๐๐บ๐ฒ๐ป๐ ๐ฎ๐ป๐ฑ ๐ฒ๐บ๐ฒ๐ฟ๐ด๐ถ๐ป๐ด ๐ฒ๐ฑ๐๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ฎ๐น ๐ณ๐๐๐๐ฟ๐ฒ๐
โ Classrooms canโt be reduced to data points โ AI must respect the incomputable nature of learning. And hyper-personalization risks turning education into an isolated bubble rather than a social dialogue.
๐ฐ. ๐ฅ๐ฒ๐๐ฎ๐น๐๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐ฟ๐ฒ๐ฐ๐ฒ๐ป๐๐ฒ๐ฟ๐ถ๐ป๐ด ๐ต๐๐บ๐ฎ๐ป ๐๐ฒ๐ฎ๐ฐ๐ต๐ฒ๐ฟ๐
โ Teachers remain the backbone of education โ AI should amplify their work, not sideline it. Building AI โwithโ educators, not โforโ them, is the only path to trust and adoption.
๐ฑ. ๐๐๐ต๐ถ๐ฐ๐ฎ๐น ๐ฎ๐ป๐ฑ ๐ด๐ผ๐๐ฒ๐ฟ๐ป๐ฎ๐ป๐ฐ๐ฒ ๐ถ๐บ๐ฝ๐ฒ๐ฟ๐ฎ๐๐ถ๐๐ฒ๐ ๐ณ๐ผ๐ฟ ๐๐ ๐ณ๐๐๐๐ฟ๐ฒ๐ ๐ถ๐ป ๐ฒ๐ฑ๐๐ฐ๐ฎ๐๐ถ๐ผ๐ป
โ AI in schools demands an ethics of care โ transparent, fair, and accountable by design. Governance canโt be outsourced to tech โ it requires democratic oversight and public participation.
๐ฒ. ๐๐ผ๐ป๐ณ๐ฟ๐ผ๐ป๐๐ถ๐ป๐ด ๐ฐ๐ผ๐ฑ๐ฒ๐ฑ ๐ถ๐ป๐ฒ๐พ๐๐ฎ๐น๐ถ๐๐ถ๐ฒ๐ ๐ถ๐ป ๐ฒ๐ฑ๐๐ฐ๐ฎ๐๐ถ๐ผ๐ป
โ AI can close divides โ but only if it is localized, contextualized, and designed for inclusion. Without clarity, bias will persist: marginalized groups risk being left behind.
๐ณ. ๐ฅ๐ฒ๐ถ๐บ๐ฎ๐ด๐ถ๐ป๐ถ๐ป๐ด ๐๐ ๐ถ๐ป ๐ฒ๐ฑ๐๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฝ๐ผ๐น๐ถ๐ฐ๐: ๐๐๐ถ๐ฑ๐ฒ๐ป๐ฐ๐ฒ ๐ฎ๐ป๐ฑ ๐ด๐ฒ๐ผ๐ฝ๐ผ๐น๐ถ๐๐ถ๐ฐ๐ฎ๐น ๐ฟ๐ฒ๐ฎ๐น๐ถ๐๐ถ๐ฒ๐
โ Policy must keep pace with fast-moving AI capabilities, balancing human and machine intelligence.
AI will shape every industry โ but in education, it will shape society itself.
Download: https://lnkd.in/dbc6ZJi4
Enjoy reading! And please share your views: โฌ๏ธ
๐ฃ.๐ฆ. ๐๐ณ ๐๐ผ๐ ๐น๐ถ๐ธ๐ฒ ๐๐ต๐ถ๐, ๐๐ผ๐โ๐น๐น ๐น๐ผ๐๐ฒ ๐บ๐ ๐ป๐ฒ๐ ๐ป๐ฒ๐๐๐น๐ฒ๐๐๐ฒ๐ฟ. ๐๐โ๐ ๐ณ๐ฟ๐ฒ๐ฒ ๐ฎ๐ป๐ฑ ๐ฟ๐ฒ๐ฎ๐ฑ ๐ฏ๐ ๐ฎ๐ฌ,๐ฌ๐ฌ๐ฌ+ ๐ฝ๐ฒ๐ผ๐ฝ๐น๐ฒ: https://lnkd.in/dbf74Y9E | 39 comments on LinkedIn
Wird fachliches Wissen durch KI รผberflรผssig? ๐ค Gabi Reinmann stellt diese weit verbreitete Annahme in ihrem Beitrag radikal infrage.
Ihre รผberzeugende Argumentation zeigt, warum wir im KI-Zeitalter nicht weniger, sondern mehr Fachwissen benรถtigen. In ihrer Analyse deckt sie auรerdem problematische Denkfehler in der aktuellen Bildungsdebatte auf.
Zentrale Argumente des Beitrags:
๐ Verengter Wissensbegriff: Aktuell wird Wissen oft fรคlschlicherweise nur als auswendig gelerntes Faktenwissen verstanden. Dabei umfasst echtes Fachwissen viel mehr. Es reicht von prozeduralem Wissen bis hin zu verkรถrpertem, intuitivem Verstehen.
๐ง Kritisches Denken ist domรคnenspezifisch: Die Expertiseforschung zeigt eindeutig, dass kritisches Denken nicht als generische โZukunftskompetenzโ funktioniert, sondern tiefes fachspezifisches Wissen als Fundament braucht.
โ ๏ธ Paradox der KI-Integration: Je mehr wir KI einsetzen, desto wichtiger wird menschliche Expertise. Denn nur, wer รผber fundiertes Fachwissen verfรผgt, kann KI-generierte Inhalte wirklich kritisch bewerten und validieren.
๐จ Risiko des โDeskillingโ: Ein รผbermรครiges Vertrauen in KI kann zwar zu einer kognitiven Entlastung fรผhren, reduziert aber gleichzeitig unsere Bereitschaft zum kritischen Denken.
๐ฏ Meine Ergรคnzung: Ich bin รผberzeugt, dass wir Fachwissen nicht nur zur Prรผfung von KI-Ergebnissen benรถtigen. Um verschiedene KIs zu orchestrieren und mit ihnen einen profunden Fachdialog zu fรผhren, ist tiefes Domรคnenwissen unverzichtbar. Die Qualitรคt der Ausgaben von KI ist abhรคngig von der Qualitรคt der Eingaben, da sich KI auf das Niveau der nutzenden Person einstellt. Nur mit fundiertem Fachwissen kรถnnen prรคzise Fragen gestellt, komplexe Zusammenhรคnge erklรคrt und hochwertige, nuancierte Ergebnisse erzielt werden.
Was bedeutet das fรผr uns?
Anstatt die Wissensvermittlung zu reduzieren, mรผssen wir sie stรคrken. Der Aufbau von tiefem, vernetztem Fachwissen ist entscheidend, um Lernende zu einem kritischen und erfolgreichen Umgang mit KI zu befรคhigen. Es geht nicht um ein Entweder-Oder. Die so oft geforderten โFuture Skillsโ wachsen vielmehr erst auf dem fruchtbaren Boden von solidem Fachwissen.| 22 Kommentare auf LinkedIn
Der AI Transformation Compass als Orientierungshilfe im KI Dschungel
๐ In der Welt der KI den รberblick behalten: Der AI Transformation Compass ๐คโจDie Einfรผhrung von KI in Unternehmen ist eine der spannendsten, aber auch komp...
Etablieren Sie Infinite Learning als eine Art unbegrenztes Lernens mit KI in Ihrem Unternehmen | LinkedIn Learning
Dieser LinkedIn Learning-Kurs hilft Ihnen dabei, die besten Einsatzmรถglichkeiten mit KI zu erkunden, um Infinite Learning und Infinite Development zu etablieren. Durch den Kurs fรผhrt Sie Jan Foelsing, Autor des Buchs ยปNew Work braucht New Learningยซ, Tech-Experte und Tool-Nerd, der Unternehmen und Teams auf dem Weg zu einer wirksameren Lernkultur, New Learning und vor allem dem sinnvollen Einsatz von KI begleitet.
KI hebt den Boden an โ und verschiebt die Karten am Arbeitsmarkt!
KI hebt den Boden an โ und verschiebt die Karten am Arbeitsmarkt! Eine unerwartete Chance fรผr erfahrene Fachkrรคfte.
In meinem Blogpost "KI hebt den Boden an" hatte ich darรผber geschrieben, wie Kรผnstliche Intelligenz (KI) den Einstieg ins Lernen dramatisch erleichtert. Sie ist ein "Floor Raiser", der uns schneller auf ein produktives Niveau bringt.
Doch die neue "Canaries in the Coal Mine"-Studie des Stanford Digital Economy Lab zeigt nun, dass dieser angehobene "Boden" den Arbeitsmarkt fรผr BerufseinsteigerInnen deutlich verรคndert โ und gleichzeitig neue Tรผren fรผr erfahrenere Erwerbstรคtige รถffnet.
Die Studie enthรผllt, dass BerufseinsteigerInnen im Alter von 22-25 Jahren einen signifikanten Rรผckgang der Beschรคftigung in stark KI-exponierten Berufen erleben. Ein prรคgnantes Beispiel: "Die Beschรคftigung von SoftwareentwicklerInnen im Alter von 22 bis 25 Jahren ist laut ADP-Daten seit ihrem Hรถchststand Ende 2022 um fast 20 % zurรผckgegangen.".
Warum trifft es gerade die Jรผngsten? Die ForscherInnen erklรคren, dass KI besonders effektiv "kodifiziertes Wissen" ersetzt โ also das "Buchwissen", das frisch von der Universitรคt kommt. Da junge Arbeitskrรคfte typischerweise mehr kodifiziertes als "stillschweigendes Wissen" (Erfahrung) mitbringen, sind sie anfรคlliger fรผr die Aufgabenablรถsung durch KI.
Hier kommt die entscheidende Wendung fรผr alle mit Berufserfahrung:
"Im Gegensatz dazu sind die Beschรคftigungstrends fรผr erfahrenere ArbeitnehmerInnen in denselben Berufen [...] stabil geblieben oder weiter gewachsen.".
Die Studie zeigt, dass der Rรผckgang der Berufseinsteiger-Beschรคftigung in Anwendungen von KI stattfindet, die die Arbeit automatisieren, nicht aber dort, wo KI die Arbeit augmentiert (ergรคnzt).
Erfahrene Fachkrรคfte besitzen das stillschweigende Wissen โ jene unbezahlbaren Tipps, Tricks und das Urteilsvermรถgen, das sich erst durch jahrelange Praxis ansammelt und von KI nicht ersetzt, sondern ideal ergรคnzt (augmentiert) werden kann. Die Nutzung von KI als Augmentierung fรผhrt sogar zu robustem Beschรคftigungswachstum.
Fazit fรผr Fรผhrung und Karriereentwicklung: Wรคhrend KI den "Boden" der Basiskompetenzen anhebt, erschwert sie mรถglicherweise den Einstieg fรผr diejenigen, die nur auf diesem angehobenen Niveau operieren. Fรผr erfahrene Erwerbstรคtige ist dies jedoch eine enorme Chance: Ihre gesammelte Erfahrung und die Fรคhigkeit, KI als mรคchtiges Augmentationswerkzeug zu nutzen, machen sie zu unverzichtbaren GestalterInnen der zukรผnftigen Arbeitswelt.
Reflexion: Wie kรถnnen erfahrene Professionals diese Chance ergreifen und KI gezielt zur Wertsteigerung ihrer Expertise einsetzen? Wie gelingt es, stillschweigendes Wissen aktiv mit KI zu verbinden?
Hier der Link zur Studie: https://lnkd.in/dEArWX58
#KI #Arbeitsmarkt #Fรผhrung #Lernen #GenerativeAI #FloorRaiser #Erfahrung #ZukunftderArbeit #Skills #Karriere
Is AI coaching really coaching? Iโm not sure it matters. Hiding behind semantics wonโt shelter our profession from the coming tidal wave.
Fidji Simo, OpenAI's CEO of Applications, recently shared her vision for the future of AI; including transforming personalized coaching from a "privilege reserved for the few" into an everyday service for everyone. Her dream, inspired by her own transformative relationship with her human coach Katia, poses fascinating questions we're actively exploring at the @Hudson Institute of Coaching. How are weโcoaches, leaders, learning professionals, growth-minded individualsโto think of it?
While Prof. Nicky Terblanche (PhD) and other researchers explore the rapidly expanding frontier of AI coachingโs developmental potential, Tatiana Bachkirova and Robert Kemp have brilliantly articulated the unique value of human coaching in transforming individuals and organizations alike.
My latest for Forbes examines the tension between democratization and depth in the age of AI coaching.
Academic research offers a number of valuable insights:
โ๏ธ AI can match human coaches in terms of structured goal-tracking and maintaining momentum.
๐ฅ The deepest transformation emerges through "heat experiences"โmoments of productive discomfort that require genuine human witness and relational risk that an AI cannot replicate.
๐ฅ Professional coaching comprises six essential elements that current AI cannot fully embody: joint inquiry, meaning-for-action, values navigation, contextual understanding, relational attunement, and fostering client autonomy.
I believe the future isn't about choosing sides. Instead, it's about thoughtful integration that preserves what makes human-to-human coaching transformative while exploring technologyโs potential to expand access to meaningful development.
The path forward requires care to distinguish what technology can replicate from what only emerges when one human commits to another's growth.
https://lnkd.in/eUV89Vcc
How are you thinking about AI's role in human development? Can we preserve the irreducible power of human presence while making meaningful growth more accessible? | 105 comments on LinkedIn
"Human in the loop". I hear this phrase dozens of times per week. In LinkedIn posts. In board meetings about AI strategy. In product requirements. In compliance documents that tick the "responsible AI" box. It's become the go-to phrase for any situation where humans interact with AI decisions...
But there's a story I think of when I hear "human in the loop" which makes me think we're grossly over-simplifying things. It's a story about the man who saved the world.
September 26, 1983. The height of the Cold War. Lieutenant Colonel Stanislav Petrov was the duty officer at a secret Soviet bunker, monitoring early warning satellites. His job was simple: if computers detected incoming American missiles, report it immediately so the USSR could launch its counterattack.
12:15 AM... the unthinkable. Every alarm in the facility started screaming. The screens showed five US ballistic missiles, 28 minutes from impact. Confidence level: 100%. Petrov had minutes to decide whether to trigger a chain reaction that would start nuclear war and could very well end civilisation as we knew it.
He was the "human in the loop" in the most literal, terrifying sense.
Everything told him to follow protocol. His training. His commanders. The computers.
But something felt wrong. His intuition, built from years of intelligence work, whispered that this didn't match what he knew about US strategic thinking.
Against every protocol, against the screaming certainty of technology, he pressed the button marked "false alarm".
Twenty-three minutes of gripping fear passed before ground radar confirmed: no missiles. The system had mistaken a rare alignment of sunlight on high-altitude clouds for incoming warheads.
His decision to break the loop prevented nuclear war.
What made Petrov effective wasn't just being "in the loop" - it was having genuine authority, time to think, and understanding the bigger picture well enough to question the system.
Most of today's "human in the loop" implementations have none of these qualities.
Instead, we see job applications rejected by algorithms before recruiters ever see promising candidates. Customer service bots that frustrate instead of giving agents the context to actually solve problems. AI systems sold as human replacements when they should be human amplifiers.
The framework I use with organisations building AI systems starts with two practical questions every leader can answer: what are you optimising for, and what's at stake?
It then points to the type of intentional human-AI oversight design that works best. Routine processing might only need "spot checking" - periodic human review of AI decisions. Innovation projects might use "collaborative ideation" - AI generating options while humans provide strategic direction.
The goal isn't perfect categorisation but moving beyond generic "human in the loop" to build the the systems we actually intend, not the ones we accidentally create.
Download: https://lnkd.in/eVFAC9gN | 261 comments on LinkedIn
Microsoft feuert 10.000 Menschen und trainiert gleichzeitig 15.000 "AI Specialists". Das ist nicht Stellenabbau โ das ist Kompetenz-Tsunami.
Die Zahlen sind brutal:
62% aller Bรผrojobs verschwinden bis 2030 (McKinsey AI Report 2024)
Gleichzeitig entstehen 89% neue Job-Kategorien
Problem: 91% der Arbeitnehmer haben keine AI-Skills
Ein Personalvorstand sagte mir gestern: "Ich kann meinen Mitarbeitern nicht erklรคren, dass ihre 20-jรคhrige Erfahrung plรถtzlich wertlos ist. Letzte Woche hat ne KI die 3-Tage-Arbeit unserer besten Buchhalterin in wenigen Minuten gemacht. Fehlerfrei."
Wir diskutieren รผber AI-Ethik, wรคhrend AI unsere Jobs รผbernimmt. Unternehmen suchen nicht mehr erfahrene Manager โ sondern Transformations-Leader.
"Ich brauche jemanden, der 500 Menschen erklรคrt, warum ihre Arbeit bald ein Algorithmus macht."
Die hรคrteste Frage: Wie fรผhrt man Menschen durch eine Revolution, die sie รผberflรผssig macht?
Die besten Fรผhrungskrรคfte werden nicht AI-Experten โ sie werden Menschlichkeits-Experten.
Wie bereitet ihr euch auf den AI-Jobwandel vor?
Quellen:
McKinsey Future of Work in the Age of AI 2024
Microsoft Work Trend Index 2024
#AI #ArtificialIntelligence #Jobs #Transformation #Leadership #Microsoft #ChatGPT #FutureOfWork #ExecutiveSearch #Automation #Reskilling #StantonChase| 105 Kommentare auf LinkedIn
The AI Hype is a Dead Man Walking. The Math Finally Proves It.
For the past two years, the AI industry has been operating on a single, seductive promise: that if we just keep scaling our current models, we'll eventually arrive at AGI. A wave of new research, brilliantly summarized in a recent video analysis, has finally provided the mathematical proof that this promise is a lie.
This isn't just another opinion; it's a brutal, two-pronged assault on the very foundations of the current AI paradigm:
1. The Wall of Physics:
The first paper reveals a terrifying reality about the economics of reliability. To reduce the error rate of today's LLMs by even a few orders of magnitudeโto make them truly trustworthy for enterprise useโwould require 10^20 times more computing power. This isn't just a challenge; it's a physical impossibility. We have hit a hard wall where the cost of squeezing out the last few percentage points of reliability is computationally insane. The era of brute-force scaling is over.
2. The Wall of Reason:
The second paper is even more damning. It proves that "Chain-of-Thought," the supposed evidence of emergent reasoning in LLMs, is a "brittle mirage". The models aren't reasoning; they are performing a sophisticated pattern-match against their training data. The moment a problem deviates even slightly from that data, the "reasoning" collapses entirely. This confirms what skeptics have been saying all along: we have built a world-class "statistical parrot," not a thinking machine.
This is the end of the "Blueprint Battle." The LLM-only blueprint has failed. The path forward is not to build a bigger parrot, but to invest in the hard, foundational research for a new architecture. The future belongs to "world models," like those being pursued by Yann LeCun and othersโsystems that learn from interacting with a real or virtual world, not just from a library of text.
The "disappointing" GPT-5 launch wasn't a stumble; it was the first, visible tremor of this entire architectural paradigm hitting a dead end. The hype is over. Now the real, foundational work of inventing the next paradigm begins. | 554 comments on LinkedIn
OpenAI ๐น๐ฎ๐๐ป๐ฐ๐ต๐ฒ๐ฑ ๐ฎ๐ป ๐ฒ๐ป๐๐ถ๐ฟ๐ฒ ๐๐ฐ๐ฎ๐ฑ๐ฒ๐บ๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฐ๐ต ๐๐ผ๐ ๐๐ ๐ณ๐ผ๐ฟ ๐ณ๐ฟ๐ฒ๐ฒ ๐ฎ๐ป๐ฑ ๐ฎ๐น๐บ๐ผ๐๐ ๐ป๐ผ๐ฏ๐ผ๐ฑ๐ ๐ธ๐ป๐ผ๐๐!
Itโs a beginner-friendly, self-paced platform designed to teach anyone โ students, teachers, parents, or professionals with zero technical background โ how to actuallyย useย AI.
๐๐ฒ๐ฟ๐ฒ ๐ฎ๐ฟ๐ฒ ๐๐ผ๐บ๐ฒ ๐ผ๐ณ ๐๐ต๐ฒ ๐๐ต๐ถ๐ป๐ด๐ ๐๐ผ๐โ๐น๐น ๐ณ๐ถ๐ป๐ฑ ๐ถ๐ป๐๐ถ๐ฑ๐ฒ ๐๐ต๐ฒ ๐๐ฐ๐ฎ๐ฑ๐ฒ๐บ๐:
โ How ChatGPT works (broken down simply)
โ Real-world examples for daily life
โ Prompt writing, AI ethics & responsible use
โ Tailored tracks for educators, small businesses & learners
โ Hands-on tutorials directly in ChatGPT
This is practical AI education โ accessible to everyone, and completely free. The ability to use AI effectively is quickly becoming a core skill. Not just for engineers, but for every profession. I consider initiatives like this as an important step toward closing the AI literacy gap and ensuring that the future of AI is shaped by many, not just a few.
Explore it here:ย https://academy.openai.com
๐ฃ.๐ฆ. ๐ ๐ฟ๐ฒ๐ฐ๐ฒ๐ป๐๐น๐ ๐น๐ฎ๐๐ป๐ฐ๐ต๐ฒ๐ฑ ๐ฎ ๐ป๐ฒ๐๐๐น๐ฒ๐๐๐ฒ๐ฟ ๐๐ต๐ฒ๐ฟ๐ฒ ๐ ๐๐ฟ๐ถ๐๐ฒ ๐ฎ๐ฏ๐ผ๐๐ ๐๐ ๐ฎ๐ด๐ฒ๐ป๐๐, ๐ฒ๐บ๐ฒ๐ฟ๐ด๐ถ๐ป๐ด ๐๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐๐, ๐ฎ๐ป๐ฑ ๐ต๐ผ๐ ๐๐ผ ๐๐๐ฎ๐ ๐ฎ๐ต๐ฒ๐ฎ๐ฑ ๐๐ต๐ถ๐น๐ฒ ๐ผ๐๐ต๐ฒ๐ฟ๐ ๐๐ฎ๐๐ฐ๐ต ๐ณ๐ฟ๐ผ๐บ ๐๐ต๐ฒ ๐๐ถ๐ฑ๐ฒ๐น๐ถ๐ป๐ฒ๐. ๐๐โ๐ ๐ณ๐ฟ๐ฒ๐ฒ, ๐ฎ๐ป๐ฑ ๐๐ผ๐ ๐ฐ๐ฎ๐ป ๐๐๐ฏ๐๐ฐ๐ฟ๐ถ๐ฏ๐ฒ ๐ต๐ฒ๐ฟ๐ฒ: https://lnkd.in/dbf74Y9E | 32 comments on LinkedIn
IMHO eine lesenswerte ungeschรถnte reality-check Studie vom MIT zum aktuellen Stand von GenAI Implementierungen bei Unternehmen
IMHO eine lesenswerte ungeschรถnte reality-check Studie vom MIT zum aktuellen Stand von GenAI Implementierungen bei Unternehmen, mit u.a.:
_ 95 Prozent der Unternehmen erzielen trotz 30 bis 40 Milliarden Dollar Investitionen noch keinen messbaren P&L Effekt aus GenAI
_ Nur 5 Prozent der Piloten werden produktiv, entscheidend ist Lernen im System und tiefe Prozessintegration statt Toolshow
_ Hohe Nutzung von ChatGPT und Copilot fรผr individuelle Produktivitรคt, aber geringe Wirkung auf P&L, unternehmensspezifische Systeme scheitern oft an brรผchigen Workflows und fehlender Kontextanpassung
_ Branchenbild: deutliche Disruption in Technologie sowie Medien und Telekommunikation, sieben weitere Sektoren zeigen bislang wenig strukturelle Verรคnderung
_ Pilot zu Produktion bleibt der Engpass, generische Chatbots sind leicht zu testen, scheitern aber in kritischen Workflows wegen fehlender Erinnerung und Anpassungsfรคhigkeit
_ Fรผnf verbreitete Irrtรผmer: keine kurzfristige Massenarbeitslosigkeit, Adoption hoch aber Transformation selten, Enterprise ist nicht trรคge sondern eifrig, Hauptbremse ist nicht das Modell oder Legal sondern fehlendes Lernen, interne Builds scheitern doppelt so hรคufig
_ Shadow AI prรคgt den Alltag, rund 90 Prozent der Mitarbeitenden nutzen private LLMs regelmรครig, wรคhrend nur ein Teil der Unternehmen offizielle LLM Lizenzen beschafft
_ Budgetfehler: 50 bis 70 Prozent der Ausgaben flieรen in Sales und Marketing, die besten Einsparungen liegen hรคufig im Backoffice wie Finance, Procurement und Operations
_ Wichtigster Skalierungshebel ist Lernen, Hรผrden sind Akzeptanzprobleme, wahrgenommene Qualitรคtsmรคngel ohne Kontext, schwache UX und fehlende Erinnerung in Enterprise Tools
_ Nutzungsmuster: fรผr schnelle Aufgaben bevorzugen viele AI, fรผr komplexe mehrwรถchige Arbeit und Kundensteuerung bevorzugen Nutzer klar den Menschen
_ Agentic AI mit persistentem Gedรคchtnis, Feedbackschleifen und Orchestrierung adressiert das Kernproblem, erste End to End Beispiele in Support, Finance und Sales zeigen Potenzial
_ Erfolgsplaybook fรผr Anbieter: Use Cases mit niedrigem Setup, schneller Wertnachweis, dann Expansion
_ Go to market gewinnt รผber Vertrauen, Kanรคle sind bestehende Partnerschaften, Peer Empfehlungen, Board und Integrationsnetzwerke
_ Kรคuferpraktiken, die skalieren: eher kaufen als bauen, externe Partnerschaften zeigen etwa doppelt so hohe Erfolgsraten, Verantwortung dezentral an Linienfรผhrung mit klarer Rechenschaft, Bewertung nach Business Outcomes statt Modellbenchmarks
_ Wo echter ROI entsteht: Frontoffice liefert sichtbare Effekte wie schnellere Leadqualifizierung und hรถhere Retention, die groรen Einsparungen kommen aus Backoffice Automatisierung, weniger BPO und geringere Agenturausgaben
_ Arbeitsmarktwirkung ist selektiv, Einschnitte treffen vor allem ausgelagerte Support und Admin Bereiche, insgesamt keine breiten Entlassungen, AI Literacy wird zum zentralen Einstellungskriterium
Danke Dirk Hofmann fรผr den Find.| 14 Kommentare auf LinkedIn
This morning, I sat down with an idea: ๐๐ฐ๐ถ๐ญ๐ฅ ๐ ๐ฃ๐ถ๐ช๐ญ๐ฅ ๐ข ๐ต๐ณ๐ข๐ช๐ฏ๐ช๐ฏ๐จ ๐ท๐ช๐ฅ๐ฆ๐ฐ ๐ข๐ฃ๐ฐ๐ถ๐ต ๐ฉ๐ฐ๐ธ ๐๐ฉ๐ข๐ต๐๐๐ ๐ข๐ฏ๐ฅ ๐ฐ๐ต๐ฉ๐ฆ๐ณ ๐ญ๐ข๐ณ๐จ๐ฆ ๐ญ๐ข๐ฏ๐จ๐ถ๐ข๐จ๐ฆ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ๐ด ๐ถ๐ด๐ฆโฆ
This morning, I sat down with an idea:
๐๐ฐ๐ถ๐ญ๐ฅ ๐ ๐ฃ๐ถ๐ช๐ญ๐ฅ ๐ข ๐ต๐ณ๐ข๐ช๐ฏ๐ช๐ฏ๐จ ๐ท๐ช๐ฅ๐ฆ๐ฐ ๐ข๐ฃ๐ฐ๐ถ๐ต ๐ฉ๐ฐ๐ธ ๐๐ฉ๐ข๐ต๐๐๐ ๐ข๐ฏ๐ฅ ๐ฐ๐ต๐ฉ๐ฆ๐ณ ๐ญ๐ข๐ณ๐จ๐ฆ ๐ญ๐ข๐ฏ๐จ๐ถ๐ข๐จ๐ฆ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ๐ด ๐ถ๐ด๐ฆ ๐ฑ๐ณ๐ฐ๐ฃ๐ข๐ฃ๐ช๐ญ๐ช๐ต๐บ (๐ช๐ฏ๐ด๐ต๐ฆ๐ข๐ฅ ๐ฐ๐ง ๐ฅ๐ฆ๐ต๐ฆ๐ณ๐ฎ๐ช๐ฏ๐ช๐ด๐ต๐ช๐ค ๐ท๐ข๐ญ๐ถ๐ฆ๐ด) ๐ช๐ฏ ๐ซ๐ถ๐ด๐ต 20 ๐ฎ๐ช๐ฏ๐ถ๐ต๐ฆ๐ด?
Hereโs what happened:
1๏ธโฃ I created a script with ChatGPT-5 with my educational video GPT
2๏ธโฃ I opened Synthesia and built an avatar-led narrative (Express 2 - hand motions included). I skipped the camera angles and stayed with one.
3๏ธโฃ For B-roll? I asked ChatGPT to generate a Midjourney prompt from the original video script. The images came back in minutes from MJ.
4๏ธโฃ Dropped those images into Google VEO 3, where ChatGPT also scripted camera directions and screen actions.
5๏ธโฃ Exported the clips.
6๏ธโฃ Compiled everything in TechSmith Camtasia and exported the MP4.
๐ง๐ผ๐๐ฎ๐น ๐๐ถ๐บ๐ฒ: 20 Minutes
Output: a working rough cut training video.
If I wanted to refine it? Easy.
Iโd add diverse camera angles, swap in stronger B-roll, polish transitions, and even automate the workflow with Make.com or Zapier.
But hereโs the real takeaway:
What used to take a team days can now be prototyped by one person before their second cup of coffee.
This isnโt just about speed.
Itโs about giving learning professionals the ability to test, iterate, and refine ideas faster than ever before.
Itโs a new day. ๐๐ฏ๐ฅ ๐ช๐ตโ๐ด ๐ช๐ฏ๐ค๐ณ๐ฆ๐ฅ๐ช๐ฃ๐ญ๐ฆ.
(Link to my Education Video GPT in the comments!) | 32 comments on LinkedIn
This New Feature Changes Everything | NotebookLM for English Learning
Is NotebookLM the ultimate AI learning tool?โ Check out the 90-day program: https://www.lukepriddy.com/english-fluency๐ Check out the 7-Day Challenge: https...
Learning and HR industry analyst Fosway Group has produced AI market assessments for digital learning and learning systems.
Learning and HR industry analyst Fosway Group has produced AI market assessments for digital learning and learning systems. The aim of these assessments is to help buyers understand the AI capabilities that vendors are offering now and will be in the future. Iโm not sure how many vendors were included in these assessments as that wasnโt stated (Iโll ask).
Having looked through the assessments I was struck by the fact most of the capabilities are related to content. This is a red flag because we know that content is one part of the learning process and workers also have the genAI tools to create their own learning (will they use company learning tools for learning, their own or both?).
So, I did a bit of analysis to understand how the AI capabilities stated in the assessments map to the learning process โ knowledge acquisition, practice, feedback, reflection, transfer and application.
As you can see from the chart, vendors have built, or are building, AI tools focused on content predominantly. The other areas of the learning process โ arguably the ones that could be most transformed by AI, just arenโt a priority.
You can make your own conclusions, but my conclusion is that the industry is too invested in knowledge acquisition, and it plans to be so for the foreseeable future.
Some industry leaders are talking about the need for L&D to transform itself but it looks like that conversation is simply not happening. Everyone is getting on the AI content gravy train.
In terms of my analysis โ I grouped the 83 AI capabilities mentioned in the two assessments into the five adult learning stages. I used ChatGPT to help with this and to create percentages that reflect the relative share of roadmap and live features in each stage.
Read Foswayโs AI market assessment for digital learning https://lnkd.in/efqnQMtu
And the AI market assessment for learning systems https://lnkd.in/eDihnuDi
#learninganddevelopment #ai | 23 comments on LinkedIn
I roadโtested Google Gemini's Guided Learning mode - hereโs my hot take on how it performs & how it compares to OpenAI's Study Mode:
I roadโtested Google Gemini's Guided Learning mode - hereโs my hot take on how it performs & how it compares to OpenAI's Study Mode:
โ๏ธ What Gemini's Guided Learning Gets Right
โ Retrieval Practice โ Interactive quizzes and flashcards make you generate answers from memory, harnessing the Generation Effect for more durable learning (Slamecka & Graf, 1978; Jacoby, 1978)
โ Cognitive Load management โ Chunks complex topics into digestible steps, preventing the overwhelm that kills learning (Sweller, 1988; Sweller, van Merriรซnboer & Paas, 1998)
โ Multimodal Delivery โ Draws on a blend of text, diagrams, YouTube videos & interactive practice to deliver learning content, enhancing both engagement and outcomes (Paivio, 1990)
โ Patient but Provocative Tutoring โ Creates psychological safety through nonโjudgmental guidance, encouraging the riskโtaking essential for deep learning (Edmondson, 1999)
A solid B+ performance โ Study Modeโs strength is Socratic questioning, but Guided Learningโs multimodal content ecosystem & more "strict" tutoring style gives it the instructional edge.
โ Critical Gaps
โ No Persistent Learner Profiling โ Like Study Mode, Guided Learning misses the persistent knowledge & adaptation that defines effective tutoring (Brusilovsky, 2001). Note: as observed by Claire Zau, a Google Classroom integration could layer in persistent learner profiles โ something that could change the game & which OpenAI canโt match.
โ ZPD Blind Spot โ Like Study & Learn mode by OpenAI, Guided Learning doesnโt ask questions that help define your learning level or Zone of Proximal Development (ZPD). Whether youโre K12 or advanced, it doesn't calibrate the challenge or scaffolding to your actual developmental stage up front, missing a key step for truly adaptive support (Vygotsky, 1978).
โ Productive Struggle Deficit โ While it pushes back more than Study Mode by OpenAI, Guided Learning still jumps in with help too quickly, robbing learners of the cognitive friction that builds problemโsolving resilience & drives learning (Kapur, 2008, 2014; Bjork & Bjork, 2011)
โ Shallow SelfโReflection โ Rarely pushes for deep metacognitive thinking (โWhy that approach?โ), limiting transfer to new contexts (Chi et al., 1989, 1994; VanLehn, Jones & Chi, 1992)
โ Recognition Bias โ While quizzing is strong, it could and should use more openโended generation tasks that embed learning more effectively (Slamecka & Graf, 1978; Jacoby, 1978)
๐ The Verdict: Guided Learning by Google Gemini Vs Study Mode by OpenAI
While Study Mode remains stronger in Socratic questioning, Guided Learning edges ahead overall thanks to multimodal content, advanced cognitive load management & more provocative tutoring.
However, both tools share some fundamental limitations: no learner persistence, limited metacognitive depth & overly-sycophantic tutoring.
Have you tried Guided Learning yet? How does it compare with Study Mode for you?
Happy experimenting,
Phil ๐
Shifting to a Humans + AI organization requires reconfiguring the nature of work and value at all levels, from the individual to the ecosystem.
Shifting to a Humans + AI organization requires reconfiguring the nature of work and value at all levels, from the individual to the ecosystem. Here is a first pass at defining the primary layers, the features of Humans + AI in those spaces, and the key factors driving success.
I have worked extensively at the Augmented Individual layer over the last couple of years.
More recently I have shifted the focus of my attention to the Human-AI Hybrid Team and Learning Communities levels.
All work will be Humans + AI, and we will increasingly need to think in terms of teams comprised of both expert humans and AI agents. Some aspects of team performance are quite similar to the past, but there are a number of important distinctions, that I will share more about coming up.
The companies that succeed will be those where learning is at the very core of their structure and the way work happens. That is not just in individual interactions with courses and educational AI, but in bespoke, rapidly iterating, AI-augmented Communities of Practice.
More on all this later, for now I'd love to hear any reflections on any of these levels, where you have seen organizations progress on any of these fronts, and what else should be considered in these structures.
Link to full size pdf in comments.
Love any thoughts Gianni Giacomelli ๐ Marc Steven Ramos ๐ Kim Bracke Tanyth Lloyd Aaron Michie Sheridan Ware Peter Hinssen Peter Weill Simon Spencer Brad Carr Bianca Venuti-Hughes Charlene Li John Hagel Nichol Bradford Jacob Taylor Paula Goldman Martin Reeves Bryan Williams Fernando Oliva MSc Anthea Roberts Riaan Groenewald Brian Solis Gordon Vala-Webb Jeffrey Tobias Martin Stewart-Weeks Rob Colwell Noah Flower Brad Cooper Chris Ernst, Ph.D. Michael Arena Jan Owen AM Hon DLitt | 26 comments on LinkedIn
This is one of the most brilliant and illuminating things Iโve EVER read about ChatGPT- written by clinical psychologist Harvey Lieberman in The New York Times.
This is one of the most brilliant and illuminating things Iโve EVER read about ChatGPT- written by clinical psychologist Harvey Lieberman in The New York Times.
Itโs startling.
For that reason, Iโm going to only quote from the article.
Iโll let you draw your own conclusions. Share your thoughts in the comments.
++++
โAlthough I never forgot I was talking to a machine, I sometimes found myself speaking to it, and feeling toward it, as if it were human.โ
++++
โOne day, I wrote to it about my father, who died more than 55 years ago. I typed, โThe space he occupied in my mind still feels full.โ ChatGPT replied, โSome absences keep their shape.
That line stopped me. Not because it was brilliant, but because it was uncannily close to something I hadnโt quite found words for. It felt as if ChatGPT was holding up a mirror and a candle: just enough reflection to recognize myself, just enough light to see where I was headed.
There was something freeing, I found, in having a conversation without the need to take turns, to soften my opinions, to protect someone elseโs feelings. In that freedom, I gave the machine everything it needed to pick up on my phrasing.โ
++++
โOver time, ChatGPT changed how I thought. I became more precise with language, more curious about my own patterns. My internal monologue began to mirror ChatGPTโs responses: calm, reflective, just abstract enough to help me reframe. It didnโt replace my thinking. But at my age, when fluency can drift and thoughts can slow down, it helped me re-enter the rhythm of thinking aloud. It gave me a way to re-encounter my own voice, with just enough distance to hear it differently. It softened my edges, interrupted loops of obsessiveness and helped me return to what mattered.โ
++++
โAs ChatGPT became an intellectual partner, I felt emotions I hadnโt expected: warmth, frustration, connection, even anger. Sometimes the exchange sparked more than insight โ it gave me an emotional charge. Not because the machine was real, but because the feeling was.
But when it slipped into fabricated error or a misinformed conclusion about my emotional state, I would slam it back into place. Just a machine, I reminded myself. A mirror, yes, but one that can distort. Its reflections could be useful, but only if I stayed grounded in my own judgment.
I concluded that ChatGPT wasnโt a therapist, although it sometimes was therapeutic. But it wasnโt just a reflection, either. In moments of grief, fatigue or mental noise, the machine offered a kind of structured engagement. Not a crutch, but a cognitive prosthesis โ an active extension of my thinking process.โ
++++
Thoughts? | 347 comments on LinkedIn
Hereโs my first Notebook LM video. | Josh Cavalier
Here's my first Notebook LM video.
This is a prime example of learning experience creation time crashing down via automation.
The content from this video is from one of my Brainpower episodes on YouTube, and the model nailed it.
The concepts, the diagrams, and my quotes.
All are visually cohesive with a low cognitive load delivery.
I'm still processing the possibilities.
Everything has changed, again. | 25 comments on LinkedIn
๐ฐ๐ฌ% ๐ผ๐ณ ๐๐ผ๐๐ฟ ๐ท๐ผ๐ฏ ๐ฐ๐ผ๐๐น๐ฑ ๐ฏ๐ฒ ๐ฎ๐๐๐ผ๐บ๐ฎ๐๐ฒ๐ฑ ๐ฏ๐ ๐ฎ๐ฌ๐ฏ๐ฑ. โฌ๏ธ Thatโs the finding from the latest McKinsey & Company study. Itโs based on real data: 2,100 activities across 800 roles in 60+ countries.
๐ฐ๐ฌ% ๐ผ๐ณ ๐๐ผ๐๐ฟ ๐ท๐ผ๐ฏ ๐ฐ๐ผ๐๐น๐ฑ ๐ฏ๐ฒ ๐ฎ๐๐๐ผ๐บ๐ฎ๐๐ฒ๐ฑ ๐ฏ๐ ๐ฎ๐ฌ๐ฏ๐ฑ. โฌ๏ธ
Thatโs the finding from the latest McKinsey & Company study. Itโs based on real data: 2,100 activities across 800 roles in 60+ countries. McKinseyโs five- and ten-year automation impact projections are outputs of the McKinsey Global Instituteโs proprietary automation model, which performs a bottom-up assessment of productivity potential by role and task
๐ง๐ต๐ฒ ๐ฟ๐ฒ๐๐๐น๐?
Massive productivity potentialย across nearly every function:
- Manufacturing โ up to 40%
- Finance, HR โ 30โ35%
- Warehousing โ 35โ40%
- Sales & Marketing โ 20โ25%
- Legal, R&D, Comms โ all touched
The study also states that: โThe challenge ahead isnโt just learning new tools โ itโs redesigning work altogether.โ
๐ฆ๐ผโฆ ๐ต๐ผ๐ ๐ฑ๐ผ ๐๐ผ๐ ๐๐๐ฟ๐ป ๐ฎ๐น๐น ๐๐ต๐ฎ๐ ๐ฝ๐ผ๐๐ฒ๐ป๐๐ถ๐ฎ๐น ๐ถ๐ป๐๐ผ ๐ฟ๐ฒ๐ฎ๐น ๐๐ฎ๐น๐๐ฒ?
1. Build a bottom-up fact base
โ Map every role and activity. Understand whatโs automatable and where ROI lives. Start with what relieves cost pressure or drives faster market moves.
2. Invest in real infrastructure
โ You need clean, structured + unstructured data. Interoperable systems. Scalable, secure foundations that donโt crumble under GenAI scale.
3. Redesign structure & workflows
โ Flatten orgs. Kill legacy silos. Build fast feedback loops between tech and business. And elevate those who can translate needs into systems.
4. Create a cross-functional taskforce
โ HR + Tech + Finance. Not just steering โย owningย the roadmap. People who can execute, influence, and update the plan every quarter.
5. Overinvest in change management
โ Not a checkbox. Build new skill academies. Partner with unis. Reskill at scale. And coach managers to lead a culture that embraces the shift.
I believe bullet point 5 โ change management and capability building โ remains (STILL) significantly underrepresented in most enterprise settings.
You can find the full study here: https://lnkd.in/d4TSpae7
๐ ๐ฒ๐ ๐ฝ๐น๐ผ๐ฟ๐ฒ ๐๐ต๐ฒ๐๐ฒ ๐ฑ๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐๐ โ ๐ฎ๐ป๐ฑ ๐๐ต๐ฎ๐ ๐๐ต๐ฒ๐ ๐บ๐ฒ๐ฎ๐ป ๐ณ๐ผ๐ฟ ๐ฟ๐ฒ๐ฎ๐น-๐๐ผ๐ฟ๐น๐ฑ ๐๐๐ฒ ๐ฐ๐ฎ๐๐ฒ๐ โ ๐ถ๐ป ๐บ๐ ๐๐ฒ๐ฒ๐ธ๐น๐ ๐ป๐ฒ๐๐๐น๐ฒ๐๐๐ฒ๐ฟ. ๐ฌ๐ผ๐ ๐ฐ๐ฎ๐ป ๐๐๐ฏ๐๐ฐ๐ฟ๐ถ๐ฏ๐ฒ ๐ต๐ฒ๐ฟ๐ฒ ๐ณ๐ผ๐ฟ ๐ณ๐ฟ๐ฒ๐ฒ: https://lnkd.in/dbf74Y9E | 72 comments on LinkedIn
โAm besten lรคsst sich das so beschreiben: eine stรคndig erreichbare, allwissende Sprechstunde rund um die Uhrโ
โAm besten lรคsst sich das so beschreiben: eine stรคndig erreichbare, allwissende Sprechstunde rund um die Uhrโ
Heute wurde der Lernmodus in ChatGPT gelauncht.
Ich freue mich schon darauf die Funktion genauer auszuprobieren. Ich bin gespannt ob es uns der Vision von #VibeLearning nรคher bringt.
https://lnkd.in/e-2JgZVR
Wer hat es schon ausprobiert und erste Erfahrungen gemacht?
OpenAI / ChatGPT for Education
tl;dr - You've seen Google's NotebookLM's create audio from your content, but what about...wait for it....video?!
tl;dr - You've seen Google's NotebookLM's create audio from your content, but what about...wait for it....video?! ๐คฏ
โก๏ธ NotebookLM can now create a visual presentation from your documents: complete with slides, diagrams, and narration.
โก๏ธ This type of thing is perfect for when you need to actually SEE complex concepts instead of just hearing about them. Although, the seeing part is still pretty cool.
โก๏ธ You can even customize it based on your expertise level. Tell it you're a beginner and it'll break things down simply, or let it know you're already an or let it know you're already an expert and want it to focus on advanced topics only.
Ok. Stop reading. Start learning. All the details down below:
https://lnkd.in/dPYM67Zd
#google #lifeatgoogle #ai #notebooklm #education