AI News

AI News

543 bookmarks
Custom sorting
Microsoft ๐—ท๐˜‚๐˜€๐˜ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜‡๐—ฒ๐—ฑ ๐Ÿฎ๐Ÿฌ๐Ÿฌ,๐Ÿฌ๐Ÿฌ๐Ÿฌ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐—”๐—œ ๐—ฐ๐—ผ๐—ป๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ โ€” ๐—ฎ๐—ป๐—ฑ ๐—ฟ๐—ฎ๐—ป๐—ธ๐—ฒ๐—ฑ ๐—ต๐—ผ๐˜„ ๐—ฎ๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ฎ๐—ฏ๐—น๐—ฒ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ท๐—ผ๐—ฏ ๐—ฟ๐—ฒ๐—ฎ๐—น๐—น๐˜† ๐—ถ๐˜€.
Microsoft ๐—ท๐˜‚๐˜€๐˜ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜‡๐—ฒ๐—ฑ ๐Ÿฎ๐Ÿฌ๐Ÿฌ,๐Ÿฌ๐Ÿฌ๐Ÿฌ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐—”๐—œ ๐—ฐ๐—ผ๐—ป๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ โ€” ๐—ฎ๐—ป๐—ฑ ๐—ฟ๐—ฎ๐—ป๐—ธ๐—ฒ๐—ฑ ๐—ต๐—ผ๐˜„ ๐—ฎ๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ฎ๐—ฏ๐—น๐—ฒ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ท๐—ผ๐—ฏ ๐—ฟ๐—ฒ๐—ฎ๐—น๐—น๐˜† ๐—ถ๐˜€.
Microsoft ๐—ท๐˜‚๐˜€๐˜ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜‡๐—ฒ๐—ฑ ๐Ÿฎ๐Ÿฌ๐Ÿฌ,๐Ÿฌ๐Ÿฌ๐Ÿฌ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐—”๐—œ ๐—ฐ๐—ผ๐—ป๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ โ€” ๐—ฎ๐—ป๐—ฑ ๐—ฟ๐—ฎ๐—ป๐—ธ๐—ฒ๐—ฑ ๐—ต๐—ผ๐˜„ ๐—ฎ๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ฎ๐—ฏ๐—น๐—ฒ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ท๐—ผ๐—ฏ ๐—ฟ๐—ฒ๐—ฎ๐—น๐—น๐˜† ๐—ถ๐˜€. โฌ‡๏ธ MS Research studied how people actually use Microsoft Copilot โ€” and what kinds of tasks AI performs best. Then they mapped that usage onto real job data across the occupation classifications. ๐—ง๐—ต๐—ฒ ๐—ฟ๐—ฒ๐˜€๐˜‚๐—น๐˜? A first-of-its-kindย AI applicability scoreย across 800+ occupations. And some surprising findings. But what does โ€œAI-applicableโ€ even mean? Microsoft used a 3-part score: โ†’ย Coverageย โ€“ How often AI touches a jobโ€™s tasks โ†’ย Completionย โ€“ How well AI helps with those tasks โ†’ย Scopeย โ€“ How much of the job AI can actually handle ๐— ๐—ผ๐˜€๐˜ ๐—”๐—œ-๐—ฎ๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐—ฏ๐—น๐—ฒ ๐—ท๐—ผ๐—ฏ๐˜€? โ†’ Interpreters, Writers, Historians, Sales Reps, Customer Service, Journalists ๐—Ÿ๐—ฒ๐—ฎ๐˜€๐˜ ๐—”๐—œ-๐—ฎ๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐—ฏ๐—น๐—ฒ ๐—ท๐—ผ๐—ฏ๐˜€? โ†’ Phlebotomists, Roofers, Ship Engineers, Dishwashers, Tractor Operators ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ ๐Ÿฒ ๐—ธ๐—ฒ๐˜† ๐˜๐—ฎ๐—ธ๐—ฒ๐—ฎ๐˜„๐—ฎ๐˜†๐˜€: โฌ‡๏ธ 1. AI is not doing your job โ€” itโ€™s helping you do it better โ†’ In 40% of conversations, the AI task and the userโ€™s goal were completely different. People ask AI for help gathering, editing, summarizing. The AI responds by teaching and explaining. This is augmentation at scale. 2. Information work is the real frontier โ†’ The most common user goals? โ€œGet informationโ€ and โ€œWrite content.โ€ The most common AI actions? โ€œProvide information,โ€ โ€œTeach others,โ€ and โ€œAdvise.โ€ 3. Jobs most affected are not just high-tech โ€” theyโ€™re high-communication โ†’ Interpreters, historians, journalists, teachers, and customer service roles all scored high. Why? Because they involveย information, communication, and explanationย โ€” all things LLMs are good at. 4. AI canโ€™t replace physical work โ€” and probably wonโ€™t โ†’ The bottom of the list? Roofers, dishwashers, tractor operators. Manual jobs remain least impacted โ€” not because AI canโ€™t help, but because it canโ€™t reach. 5. Wage isnโ€™t a strong predictor of AI exposure โ†’ Surprising: thereโ€™s only a weak correlation (r=0.07) between average salary and AI applicability. In other words: this wave of AI cuts across income levels. Itโ€™s not just a C-suite story. 6. Bachelorโ€™s degree jobs are most exposed โ€” but not most replaced โ†’ Occupations requiring a degree show more AI overlap. But that doesnโ€™t mean these jobs disappear โ€” it means they change. AI is refactoring knowledge work, not deleting. This transformation is moving faster than most realize. The question isnโ€™t whether AI will change how we work โ€” it already is. Study in comments. โฌ‡๏ธ ๐—ฃ.๐—ฆ. ๐—œ ๐—ฟ๐—ฒ๐—ฐ๐—ฒ๐—ป๐˜๐—น๐˜† ๐—น๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต๐—ฒ๐—ฑ ๐—ฎ ๐—ป๐—ฒ๐˜„๐˜€๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐˜„๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—œ ๐˜„๐—ฟ๐—ถ๐˜๐—ฒ ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐—ฒ๐˜…๐—ฎ๐—ฐ๐˜๐—น๐˜† ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐˜€๐—ต๐—ถ๐—ณ๐˜๐˜€ ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐˜„๐—ฒ๐—ฒ๐—ธ โ€” ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€, ๐—ฒ๐—บ๐—ฒ๐—ฟ๐—ด๐—ถ๐—ป๐—ด ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€, ๐—ฎ๐—ป๐—ฑ ๐—ต๐—ผ๐˜„ ๐˜๐—ผ ๐˜€๐˜๐—ฎ๐˜† ๐—ฎ๐—ต๐—ฒ๐—ฎ๐—ฑ: ๐—ต๐˜๐˜๐—ฝ๐˜€://๐˜„๐˜„๐˜„.๐—ต๐˜‚๐—บ๐—ฎ๐—ป๐—ถ๐—ป๐˜๐—ต๐—ฒ๐—น๐—ผ๐—ผ๐—ฝ.๐—ผ๐—ป๐—น๐—ถ๐—ป๐—ฒ/๐˜€๐˜‚๐—ฏ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ | 21 comments on LinkedIn
ยทlinkedin.comยท
Microsoft ๐—ท๐˜‚๐˜€๐˜ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜‡๐—ฒ๐—ฑ ๐Ÿฎ๐Ÿฌ๐Ÿฌ,๐Ÿฌ๐Ÿฌ๐Ÿฌ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐—”๐—œ ๐—ฐ๐—ผ๐—ป๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ โ€” ๐—ฎ๐—ป๐—ฑ ๐—ฟ๐—ฎ๐—ป๐—ธ๐—ฒ๐—ฑ ๐—ต๐—ผ๐˜„ ๐—ฎ๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ฎ๐—ฏ๐—น๐—ฒ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ท๐—ผ๐—ฏ ๐—ฟ๐—ฒ๐—ฎ๐—น๐—น๐˜† ๐—ถ๐˜€.
Druckfrisch aus dem Weissen Haus: Der AI Action Plan der USA. "WINNING THE RACE" ist die Ansage. Ich bin mal sehr gespannt auf die Europรคische Antwort. Mein GPT sagt dazu ganz wertfrei:
Druckfrisch aus dem Weissen Haus: Der AI Action Plan der USA. "WINNING THE RACE" ist die Ansage. Ich bin mal sehr gespannt auf die Europรคische Antwort. Mein GPT sagt dazu ganz wertfrei:
Druckfrisch aus dem Weissen Haus: Der AI Action Plan der USA. "WINNING THE RACE" ist die Ansage. Ich bin mal sehr gespannt auf die Europรคische Antwort. Mein GPT sagt dazu ganz wertfrei: "Wird 2025 zum Jahr der globalen AI-Doktrin? Mit dem 28-seitigen โ€žAmericaโ€™s AI Action Planโ€œ legt die Trump-Administration ein kompromisslos ambitioniertes Strategiepapier vor โ€“ ein geopolitisches Manifest fรผr technologische Vorherrschaft, das Innovation, Infrastruktur und Diplomatie radikal neu denkt. Ziel: globale AI-Dominanz. Kein โ€žKรถnnteโ€œ, kein โ€žSollteโ€œ. Sondern ein โ€žWirdโ€œ โ€“ mit einer Regierung, die AI als Schlรผssel zur wirtschaftlichen, militรคrischen und kulturellen Zukunft Amerikas versteht. Das Dokument ruft eine neue industrielle Revolution, eine Informationsrevolution und eine digitale Renaissance gleichzeitig aus. Der Plan umfasst: _ โ€ข Deregulierung und Priorisierung von Open-Source-Modellen โ€ข Milliarden-Investitionen in Halbleiter, Cloud-Infrastruktur, Energie und AI-Forschung โ€ข staatlich gefรถrderte AI-Sandboxes fรผr Healthcare, Bildung, Verteidigung und Industrie โ€ข nationale Reallabore, Skills-Offensiven und beschleunigte Adoption im รถffentlichen Sektor โ€ข Exportoffensive fรผr ein โ€žAmerican AI Stackโ€œ โ€“ Hardware, Modelle, Standards โ€ข strikte Exportkontrollen und diplomatische Isolierung Chinas in Governance-Gremien โ€ข Cyber- und Biosecurity-MaรŸnahmen gegen Missbrauch von Frontier-Modellen โ€ข juristische Anpassung zur Bekรคmpfung von Deepfakes und synthetischer Evidenz Bemerkenswert ist der offen geopolitische Ton: Die USA verstehen sich wieder als Gestalter einer neuen Weltordnung - mit AI als Hebel. Wer das Rennen macht, schreibt die Regeln. Fรผr Europa stellt sich damit dringender denn je die Frage: Wollen wir nur regulieren - oder auch gestalten?" Quelle: https://lnkd.in/eXwTUGzv
ยทlinkedin.comยท
Druckfrisch aus dem Weissen Haus: Der AI Action Plan der USA. "WINNING THE RACE" ist die Ansage. Ich bin mal sehr gespannt auf die Europรคische Antwort. Mein GPT sagt dazu ganz wertfrei:
I was recently looking at how Gen AI shapes and potentially impacts cognitive skills - a topic that matters for education and for work. Here are a few resources I reviewed.
I was recently looking at how Gen AI shapes and potentially impacts cognitive skills - a topic that matters for education and for work. Here are a few resources I reviewed.
I was recently looking at how Gen AI shapes and potentially impacts cognitive skills - a topic that matters for education and for work. Here are a few resources I reviewed. 1๏ธโƒฃ Your Brain on ChatGPT - What Really Happens When Students Use AI MITย releasedย a study on AI and learning. Findings indicate that students who used ChatGPT for essays showed weaker brain activity, couldn't remember what they'd written, and got worse at thinking over time https://shorturl.at/qaLie 2๏ธโƒฃ Cognitive Debt when using AI - Your brain on Chat GPT There is a cognitive cost of using an LLM vs Search Engine vs our brain in e.g. writing an essay. The study indicates that there is a likely decrease in learning skills, the more we use technology as substantial replacement of our cognitive skills. https://lnkd.in/drVa_YNg 3๏ธโƒฃ Teachers warn AI is impacting students' critical thinking One of many articles about the importance of using Gen AI smartly, in Education but also at work. https://lnkd.in/dSbGjusu 4๏ธโƒฃ The Impact of Gen AI on critical thinking Another interesting study on the same topic. https://shorturl.at/74OO6 5๏ธโƒฃ Doctored photographs create false memories In psychology, research indicated a long time ago that our memory -ย our recollection of past events - is susceptible to errors, biases, can be fragmentary, contain incorrect details, and, oftentimes, be entirely fictional. Memories are a reconstruction of our past to respond to our need for coherence in life. A rigorous 2023 study shows that doctored photographs โ€“ think Photoshop or today, AI โ€“ create false memories. Why it matters? Memory is essential for learning, recall of episodical and factual happenings, and itโ€™s a basis for the integrity of sources of truth in organizations. ย  https://shorturl.at/hdgtN 6๏ธโƒฃ The decline of our thinking skills Another great article on AI and critical thinking from IE University. https://shorturl.at/rGl99 7๏ธโƒฃ Context Engineering Ethan Mollick recently wrote a blog on "context engineering" - how we give AI the data and information it needs to generate relevant output. The comments on the post were even more interesting than the post itself. Personally I think that good part of context engineering is not in organizations documents or processes, it is in peoples ability to think critically and understand relevant parameters of their environment to nurture AI/Gen AI. Gotta follow up on this one ;-) https://shorturl.at/sfnuV #GenAI #CriticalThinking #AICognition #AIHuman #ContextEngineering | 29 comments on LinkedIn
ยทlinkedin.comยท
I was recently looking at how Gen AI shapes and potentially impacts cognitive skills - a topic that matters for education and for work. Here are a few resources I reviewed.
On Ethical AI Principles
On Ethical AI Principles
I have commented in my newsletter that what people have been describing as 'ethical AI principles' actually represents a specific political agenda, and not an ethical agenda at all. In this post, I'll outline some ethical principles and work my way through them to make my point.
ยทlinkedin.comยท
On Ethical AI Principles
Berufswahl im Zeitalter der lernenden Maschinen โ€“ Offener Brief an meine Nichte (Abi-Jahrgang 2025)
Berufswahl im Zeitalter der lernenden Maschinen โ€“ Offener Brief an meine Nichte (Abi-Jahrgang 2025)
Berufswahl im Zeitalter der lernenden Maschinen โ€“ Offener Brief an meine Nichte (Abi-Jahrgang 2025) Liebe Anna, als du mich fragtest, ob โ€žInformatik, Medienwissenschaft oder Politikโ€œ noch zukunftssicher sind, merkte ich, wie lรถchrig die alte Landkarte der Arbeit geworden ist. Code wird von KI vervollstรคndigt, Diagnosen von Algorithmen unterstรผtzt, Routinevertrรคge von Bots geprรผft. Laut Weltwirtschaftsforum wird bis 2030 fast jede zweite Kompetenz umgeschrieben. Was also studieren? Meine Empfehlung: Drei Felder, die weniger vom Titel als vom Skill-Mix leben. Warum? Weil sie Eigenschaften bieten, die KI kaum kopieren kann: direkten Menschenkontakt, interdisziplinรคres Denken und sinnliche Materialerfahrung. Sie bilden zusammen einen โ€žHuman Moatโ€œ โ€“ einen Schutzwall gegen reine Automatisierung. 1 | HEALTH & HUMAN SERVICES โ€“ BERUFE MIT EMPATHIE-FAKTOR Das ist erwartbar: Pflege, Sozialarbeit, Therapie oder Pรคdagogik bleiben knapp, weil Demografie und Krisen Resilienz verlangen. Typische Rollen: Pflegefachfrau+, Physician Assistant, Tele-Coach Mental Health. Schlรผssel-Skills: evidenzbasierte Pflege, interkulturelle Kommunikation, Basiswissen Medizinrecht und Datenschutz. 2 | TWIN-TRANSITION CAREERS โ€“ KLIMA ร— TECHNOLOGIE Smarte Mash-Ups: Unternehmen brauchen Talente, die COโ‚‚-Reduktion mit Datenkompetenz verbinden. Typische Rollen: Nachhaltigkeits-Data-Analyst, Circular-Economy-Ingenieurin, KI-Policy-Analyst, Energy-Systems-Modeler. Schlรผssel-Skills: Life-Cycle-Assessment, Python/R, EU-Regulatorik (CSRD, AI Act), Systemdenken. 3 | CRAFT & EXPERIENCE DESIGN โ€“ WERT DES EINZIGARTIGEN Je perfekter Massenware KI-optimiert ist, desto hรถher steigt der Wert des Nicht-Skalierbaren. Typische Rollen: Produktdesigner*in fรผr Bio-Materialien, Restaurator, Schreinerin mit CNC-Know-how, UX-Designer fรผr phygitale Erlebnisse. Schlรผssel-Skills: Materialkunde, CAD/CAM & 3-D-Druck, Storytelling, Customer-Journey-Mapping. Das ist natรผrlich nur ein Ausschnitt. Aber ich denke, die Muster dahinter sind klar, um es selbst weiterzudenken. WAS VERSCHWINDET? Alles, was rein repetitiv ist: Standard-Reporting, einfache Software-Tests, seitenlange Vertragsprรผfungen. Die Maschine erledigt es schneller und billiger โ€“ doch jemand muss die Systeme entwerfen, mit Daten fรผttern und ethisch beaufsichtigen. MEIN RAT IN DREI Sร„TZEN >> Suche kein Joblabel, sondern ein Problem, das dich elektrisiert. << Kombiniere digitale Grundfitness, empathische Kommunikation und moralischen Kompass. Dann arbeitest du nicht gegen Maschinen, sondern mit ihnen โ€“ und kannst dir jederzeit einen neuen Beruf erfinden. Vielleicht startest du als Pflege-Informatikerin, wirst spรคter KI-Ethikerin und erรถffnest irgendwann eine Bรคckerei, in der Roboter den Teig kneten, wรคhrend du den Sauerteig fรผtterst und Kund:innen berรคtst. Zukunftssicherheit entsteht nicht aus einem Studium, sondern aus lebenslanger Lernlust. Die Welt bleibt turbulent, doch wer Richtung Sinn steuert, hat immer Rรผckenwind. Dein Onkel Stefan | 59 Kommentare auf LinkedIn
ยทlinkedin.comยท
Berufswahl im Zeitalter der lernenden Maschinen โ€“ Offener Brief an meine Nichte (Abi-Jahrgang 2025)
Your best coach can't be everywhere at once.
Your best coach can't be everywhere at once.
Your best coach can't be everywhere at once. ๐˜‰๐˜ถ๐˜ต ๐˜ต๐˜ฉ๐˜ฆ๐˜ช๐˜ณ ๐˜ˆ๐˜ ๐˜ต๐˜ธ๐˜ช๐˜ฏ ๐˜ค๐˜ข๐˜ฏ. Scaling world-class coaching is one of the biggest headaches in L&D. You bring in a top-tier expert for a workshop, and the C-suite loves it; then what? The knowledge fades, and the cost to retain them for 1-on-1 coaching across the org is astronomical. Well, the ability to have experts available 24/7 is now a reality. Google is quietly testing a potential solution in its Labs. ๐—œ๐˜'๐˜€ ๐—ฐ๐—ฎ๐—น๐—น๐—ฒ๐—ฑ ๐—ฃ๐—ผ๐—ฟ๐˜๐—ฟ๐—ฎ๐—ถ๐˜๐˜€. Itโ€™s more than a chatbot. Itโ€™s a library of voice-enabled, AI-powered avatars of real-world experts, trained only on their unique ideas and content. What that means: โ†’ Minimal AI hallucinations โ†’ No generic advice โ†’ Just the expert's authentic perspective, on-demand Check out this screenshot of Google Portraits. Thatโ€™s an AI version of storytelling expert Matt Dicks. Heโ€™s coaching me to find the "heart of a story" in a seemingly dull, everyday moment โ€” cutting grass. It's a very immersive experience as he walks me through finding the "story" in my experience. Think about the possibilities: โ†’ Democratize coaching: Assign a storytelling coach or a feedback sparring partner to every new manager. โ†’ Practice in private: Let employees rehearse difficult conversations in a safe and controlled environment before the real thing. โ†’ Scalable IP: A new model for licensing and deploying the knowledge of the world's best minds across your entire company. This is the future of personalized, scalable learning. Itโ€™s moving from static courses to dynamic, conversational experiences. The big question for us in L&D: Is this the scalable future we've been waiting for, or are we losing the essential human element of coaching? | 12 comments on LinkedIn
ยทlinkedin.comยท
Your best coach can't be everywhere at once.
๐—ช๐—ผ๐—ฟ๐—ธ๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐— ๐—–๐—ฃ ๐—ถ๐˜€ ๐—ผ๐—ป๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ผ๐˜€๐—ฒ ๐—ฟ๐—ฎ๐—ฟ๐—ฒ โ€œ๐—ผ๐—ต ๐—ฑ๐—ฎ๐—บ๐—ป, ๐˜๐—ต๐—ถ๐˜€ ๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ฒ๐˜€ ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜†๐˜๐—ต๐—ถ๐—ป๐—ดโ€ ๐—บ๐—ผ๐—บ๐—ฒ๐—ป๐˜๐˜€! Iโ€™ve been in tech for years, and MCP (Model Context Protocol) is one of those rare innovations that deserves every bit of the hype. I really canโ€™t believe how much smoother everything gets.
๐—ช๐—ผ๐—ฟ๐—ธ๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐— ๐—–๐—ฃ ๐—ถ๐˜€ ๐—ผ๐—ป๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ผ๐˜€๐—ฒ ๐—ฟ๐—ฎ๐—ฟ๐—ฒ โ€œ๐—ผ๐—ต ๐—ฑ๐—ฎ๐—บ๐—ป, ๐˜๐—ต๐—ถ๐˜€ ๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ฒ๐˜€ ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜†๐˜๐—ต๐—ถ๐—ป๐—ดโ€ ๐—บ๐—ผ๐—บ๐—ฒ๐—ป๐˜๐˜€! Iโ€™ve been in tech for years, and MCP (Model Context Protocol) is one of those rare innovations that deserves every bit of the hype. I really canโ€™t believe how much smoother everything gets.
๐—ช๐—ผ๐—ฟ๐—ธ๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐— ๐—–๐—ฃ ๐—ถ๐˜€ ๐—ผ๐—ป๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ผ๐˜€๐—ฒ ๐—ฟ๐—ฎ๐—ฟ๐—ฒ โ€œ๐—ผ๐—ต ๐—ฑ๐—ฎ๐—บ๐—ป, ๐˜๐—ต๐—ถ๐˜€ ๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ฒ๐˜€ ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜†๐˜๐—ต๐—ถ๐—ป๐—ดโ€ ๐—บ๐—ผ๐—บ๐—ฒ๐—ป๐˜๐˜€! Iโ€™ve been in tech for years, and MCP (Model Context Protocol) is one of those rare innovations that deserves every bit of the hype. I really canโ€™t believe how much smoother everything gets. ๐—œ๐—ณ ๐—œ ๐—ต๐—ฎ๐—ฑ ๐˜๐—ผ ๐—ฏ๐—ฒ๐˜ ๐—ผ๐—ป ๐—ผ๐—ป๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐˜๐—ผ๐—ฐ๐—ผ๐—น ๐—ฏ๐—ฒ๐—ฐ๐—ผ๐—บ๐—ถ๐—ป๐—ด ๐—ฒ๐˜€๐˜€๐—ฒ๐—ป๐˜๐—ถ๐—ฎ๐—น ๐—ถ๐—ป ๐—”๐—œ, ๐—ถ๐˜โ€™๐˜€ ๐— ๐—–๐—ฃ. MCP sounds complex โ€” but itโ€™s really not. Think of it as a guide that helps your AI agents understand: โ†’ what tools exist โ†’ how to talk to them โ†’ and when to use them ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐Ÿต ๐—ณ๐˜‚๐—น๐—น๐˜† ๐—ฑ๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐— ๐—–๐—ฃ ๐—ฝ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐—ฒ๐˜…๐—ฝ๐—น๐—ฎ๐—ถ๐—ป๐—ฒ๐—ฑ ๐˜„๐—ถ๐˜๐—ต ๐˜ƒ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐˜€ & ๐—ผ๐—ฝ๐—ฒ๐—ป-๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ ๐—ฐ๐—ผ๐—ฑ๐—ฒ (๐˜๐—ผ ๐—ด๐—ฒ๐˜ ๐˜†๐—ผ๐˜‚ ๐˜€๐˜๐—ฎ๐—ฟ๐˜๐—ฒ๐—ฑ):ย โฌ‡๏ธ 1. 100% Local MCP Client โ†’ Build a local MCP client using SQLite + Ollama โ€” no cloud, no tracking. โ†’ Full docu: https://lnkd.in/gtaEGvFZ 2. MCP-powered Agentic RAG โ†’ Add fallback logic, vector search, and agents in one clean flow. โ†’ Full docu: https://lnkd.in/gsV62MDE 3. MCP-powered Financial Analyst โ†’ Fetch stock data, extract insights, generate summaries. โ†’ Full docu: https://lnkd.in/g2\_EaJ\_d 4. MCP-powered Voice Agent โ†’ Speech-to-text, database queries, and spoken responses โ€” all local. โ†’ Full docu: https://lnkd.in/gweH8Rxi 5. Unified MCP Server (with MindsDB) โ†’ Query 200+ data sources via natural language using MindsDB + Cursor. โ†’ Full docu:https://lnkd.in/gCevVqKK 6. Shared Memory for Claude + Cursor โ†’ Build cross-app memory for dev workflows โ€” share context seamlessly. โ†’ Full docu: https://lnkd.in/giDXdtXd 7. RAG Over Complex Docs โ†’ Tackle PDFs, tables, charts, messy layouts with structured RAG. โ†’ Full docu: https://lnkd.in/gMHqHvBR 8. Synthetic Data Generator (SDV) โ†’ Generate synthetic tabular data locally via MCP + SDV. โ†’ Full docu:https://lnkd.in/ghyUyByS 9. Multi-Agent Deep Researcher โ†’ Rebuild ChatGPTโ€™s research mode, fully local with writing agents. โ†’ Full docu: https://lnkd.in/gp3EsrZ2 Kudos to Daily Dose of Data Science! ๐—œ ๐—ฒ๐˜…๐—ฝ๐—น๐—ผ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜๐˜€ โ€” ๐—ฎ๐—ป๐—ฑ ๐˜„๐—ต๐—ฎ๐˜ ๐˜๐—ต๐—ฒ๐˜† ๐—บ๐—ฒ๐—ฎ๐—ป ๐—ณ๐—ผ๐—ฟ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€ โ€” ๐—ถ๐—ป ๐—บ๐˜† ๐˜„๐—ฒ๐—ฒ๐—ธ๐—น๐˜† ๐—ป๐—ฒ๐˜„๐˜€๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ. ๐—ฌ๐—ผ๐˜‚ ๐—ฐ๐—ฎ๐—ป ๐˜€๐˜‚๐—ฏ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ: https://lnkd.in/dbf74Y9E | 49 comments on LinkedIn
ยทlinkedin.comยท
๐—ช๐—ผ๐—ฟ๐—ธ๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐— ๐—–๐—ฃ ๐—ถ๐˜€ ๐—ผ๐—ป๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ผ๐˜€๐—ฒ ๐—ฟ๐—ฎ๐—ฟ๐—ฒ โ€œ๐—ผ๐—ต ๐—ฑ๐—ฎ๐—บ๐—ป, ๐˜๐—ต๐—ถ๐˜€ ๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ฒ๐˜€ ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜†๐˜๐—ต๐—ถ๐—ป๐—ดโ€ ๐—บ๐—ผ๐—บ๐—ฒ๐—ป๐˜๐˜€! Iโ€™ve been in tech for years, and MCP (Model Context Protocol) is one of those rare innovations that deserves every bit of the hype. I really canโ€™t believe how much smoother everything gets.
๐™ƒ๐™–๐™—๐™ฉ ๐™ž๐™๐™ง ๐™จ๐™˜๐™๐™ค๐™ฃ ๐™ซ๐™ค๐™ฃ ๐˜ผ๐™„ ๐™‡๐™š๐™–๐™ฅ 2025 ๐™œ๐™š๐™รถ๐™ง๐™ฉ? AI Leap ist eine landesweite KI-Bildungsinitiative aus #Estland, die 20.000 Schรผler:innen der 10. und 11. Klasse sowie 3.000 Lehrkrรคften einen kostenlosen Zugang zu KI-basierten Lernwerkzeugen und entsprechender Schulung gewรคhrt.
๐™ƒ๐™–๐™—๐™ฉ ๐™ž๐™๐™ง ๐™จ๐™˜๐™๐™ค๐™ฃ ๐™ซ๐™ค๐™ฃ ๐˜ผ๐™„ ๐™‡๐™š๐™–๐™ฅ 2025 ๐™œ๐™š๐™รถ๐™ง๐™ฉ? AI Leap ist eine landesweite KI-Bildungsinitiative aus #Estland, die 20.000 Schรผler:innen der 10. und 11. Klasse sowie 3.000 Lehrkrรคften einen kostenlosen Zugang zu KI-basierten Lernwerkzeugen und entsprechender Schulung gewรคhrt.
๐™ƒ๐™–๐™—๐™ฉ ๐™ž๐™๐™ง ๐™จ๐™˜๐™๐™ค๐™ฃ ๐™ซ๐™ค๐™ฃ ๐˜ผ๐™„ ๐™‡๐™š๐™–๐™ฅ 2025 ๐™œ๐™š๐™รถ๐™ง๐™ฉ? AI Leap ist eine landesweite KI-Bildungsinitiative aus #Estland, die 20.000 Schรผler:innen der 10. und 11. Klasse sowie 3.000 Lehrkrรคften einen kostenlosen Zugang zu KI-basierten Lernwerkzeugen und entsprechender Schulung gewรคhrt. Bereits letztes Jahr war ich von der politischen Haltung und konsequenten Umsetzung Estlands fasziniert, als ich u.a. mit der Botschafterin der Republik Estland, Marika Linntam, auf dem Panel der IHK Berlin รผber die Arbeitswelt der Zukunft diskutieren durfte. AI Leap ist Estlands Antwort auf die vielseitigen Herausforderungen im Bildungsbereich und fรถrdert frรผhzeitig notwendige Schlรผsselkompetenzen, die fรผr den Arbeitsmarkt der Zukunft unerlรคsslich sind. Estland hat erkannt, dass ein professioneller Umgang mit KI-Technologien der wichtigste Wettbewerbsfaktor der Zukunft sein wird. Das war auch eine meiner insgesamt 4 Thesen, die ich vorab in einer Keynote vorstellen durfte, den kompletten Vortrag findet ihr hier: https://lnkd.in/dTdXMGuA ๐Ÿ…ฐ๐Ÿ…ฑ๐Ÿ…ด๐Ÿ†: ๐ŸŽฏ WO STEHEN WIR IN DEUTSCHLANDโ“ ๐ŸŽฏ Wie kรถnnen wir trotz Bildungsfรถrderalismus schnell wirksam werdenโ“ Spannende Fragen fรผr unsere neue Regierung v.a. mit Blick auf das Bundesministerium fรผr Digitales und Staatsmodernisierung unter Leitung von Dr. Karsten Wildberger, das die #Digitalisierung und die #KI #KรผnstlicheIntelligenz in Deutschland auf ein nรคchstes Level heben will. Was mir gefรคllt ist die Aufbruchstimmung und ein #WirMachen. Ich hoffe, dass es gelingt, etwas zu bewegen und die entsprechenden Stakeholder einzubinden. Ich bin gerne dabei, denn da gibt es noch VIEL ZU TUN. Estland macht es vor! Es ist zwar viel kleiner als Deutschland, dennoch kรถnnen wir viel von Estland (und anderen Lรคndern) lernen v.a. wenn wir in globale Kooperationen und in Public-Private-Partnership Modelle investieren. Quelle: https://lnkd.in/eUzXiSza #FutureOfWork #FutureSkills #SmartLearning :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ๐Ÿ”” Du mรถchtest mehr รผber die Arbeitswelt im Wandel zu erfahren? Let's connect! ๐Ÿ’Œ Du interessierst Dich fรผr eine Zusammenarbeit? Schreib mir gerne!
ยทlinkedin.comยท
๐™ƒ๐™–๐™—๐™ฉ ๐™ž๐™๐™ง ๐™จ๐™˜๐™๐™ค๐™ฃ ๐™ซ๐™ค๐™ฃ ๐˜ผ๐™„ ๐™‡๐™š๐™–๐™ฅ 2025 ๐™œ๐™š๐™รถ๐™ง๐™ฉ? AI Leap ist eine landesweite KI-Bildungsinitiative aus #Estland, die 20.000 Schรผler:innen der 10. und 11. Klasse sowie 3.000 Lehrkrรคften einen kostenlosen Zugang zu KI-basierten Lernwerkzeugen und entsprechender Schulung gewรคhrt.
When I think about the future of learning with AI, I donโ€™t imagine it as more content and courses. A rewiring of what we do and how we do it is happening right now.
When I think about the future of learning with AI, I donโ€™t imagine it as more content and courses. A rewiring of what we do and how we do it is happening right now.
When I think about the future of learning with AI, I donโ€™t imagine it as more content and courses. A rewiring of what we do and how we do it is happening right now. While most teams are stuck at the point of innovations from 2 years back, you can be ahead of this. Yet...I still see a lot of talk and not so much action, sprinkled with a lot of misinformation and actual understanding of Gen AI's power and limitations. That creates a problem if the L&D industry wishes to thrive in the new world of work with AI. Thatโ€™s not to say I have โ€œall the answersโ€, coz I donโ€™t What I do have is a barrel load of real-world experiences working with teams on making AI adoptions a success. In tmrw's Steal These Thoughts! newsletter I'm going to share some of that with 5 insights that'll challenge everything you think you know about AI in L&D. Like the sound of that? โ†’ Join us by clicking 'subscribe to my newsletter' on this post and my profile. #education #learninganddevelopment #artificialintelligence
ยทlinkedin.comยท
When I think about the future of learning with AI, I donโ€™t imagine it as more content and courses. A rewiring of what we do and how we do it is happening right now.
Uses can now select the model you want to use with a custom GPT. Which is perfect for those using my performance consulting coach GPT
Uses can now select the model you want to use with a custom GPT. Which is perfect for those using my performance consulting coach GPT
This is the feature I've been waiting for OpenAI to release. It's not "game-changing", but it's incredibly useful. Uses can now select the model you want to use with a custom GPT. Which is perfect for those using my performance consulting coach GPT. Switch the model to o3 and use it as it was intended in my original design. Here's a little how-to video with my GPT in action. Find my GPT: https://lnkd.in/e2pdCKt8 #education #artificialintelligence #learninganddevelopment
ยทlinkedin.comยท
Uses can now select the model you want to use with a custom GPT. Which is perfect for those using my performance consulting coach GPT
I spent my long weekend exploring the 2025 AI-in-Education report - two graphs showed a major disconnect!
I spent my long weekend exploring the 2025 AI-in-Education report - two graphs showed a major disconnect!
We might think we have an AI adoption story, but the reality is different: we still have a huge AI understanding gap! Here are some key stats from the report that honestly made me do a double-take: โ–ช๏ธ99% of education leaders, 87% of educators worldwide & 93% of US students have already used generative-AI for school at least once or twice! โ–ช๏ธYet only 44% of those educators worldwide & 41% of those US students say they โ€œknow a lot about AI.โ€ โ€ผ๏ธthis means our usage is far outpacing our understanding & thatโ€™s a significant gap! When such powerful tools are used without real fluency, we would see: โ–ช๏ธcomplicated implementation with no shared strategy (sounds familiar?)! โ–ช๏ธanxious students whoโ€™d fear being accused of cheating (I've heard this from so many students!) โ–ช๏ธoverwhelmed teachers who feel alone, unsupported & unprepared (this one is a common concern by some of my teacher friends)! The takeaway that jumped out at me: โ–ช๏ธthe schools that win won't be the ones that adopt AI the fastest, but the ones that adopt it the wisest! So here's what Iโ€™d think we should consider: โœ…building a "learning-first" culture across institutions & understanding when AI supports our learning vs. when it gets in the way! โ–ช๏ธmore like, we need to swap the question "Are we using AI?" for "Can we show any learning gains?" โš ๏ธso, what shifts does this report data point us to? Here is my takeaway: โœ…Building real AI fluency: โ–ช๏ธmoving beyond simple "prompting hacks" to true literacy that includes understanding ethics, biases & pedagogical purposes, โ–ช๏ธthis may need an AI Council of faculty, IT, learners & others working together to develop institution-wide policies on when AI helps or harms our learning, โ–ช๏ธit's about building shared wisdom, not just industry-ready skills โœ…Creating collaborative infrastructure: โ–ช๏ธthe "every teacher for themselves" approach seems to be failing, โ–ช๏ธshared guidelines, inclusive AI Councils & a culture of open conversation are now needed to bridge this huge gap! โœ…Shifting focus from "using AI tools" to "achieving learning outcomes": โ–ช๏ธthis one really resonated with me because unlike other tech rollouts we've witnessed, AI directly affects how our students think & learn, โ–ช๏ธour institutions need coordinated assessments tracking whether AI use makes our learners better thinkers or just faster task completers! The goal that keeps coming back to us โ–ช๏ธisn't to get every student using AI! โ–ช๏ธbut to make sure every learner & teacher really understands it! โ‰๏ธIโ€™m curious, where is your institution on this journey? 1๏ธโƒฃ individual use: everyone is figuring it out on their own (been there!) 2๏ธโƒฃ shared guidelines: we have policies, but they're not yet deeply integrated (getting closer!) 3๏ธโƒฃ fully integrated strategy: we have a unified approach with a learning-first, outcome-tracked focus (this is the goal!) | 24 comments on LinkedIn
ยทlinkedin.comยท
I spent my long weekend exploring the 2025 AI-in-Education report - two graphs showed a major disconnect!
๐—ง๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐—ต๐—ฎ๐—ป๐—ฑ๐˜€ ๐—ฑ๐—ผ๐˜„๐—ป ๐—ผ๐—ป๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐—•๐—˜๐—ฆ๐—ง ๐˜ƒ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ผ๐—ณ ๐—ต๐—ผ๐˜„ ๐—Ÿ๐—Ÿ๐— ๐˜€ ๐—ฎ๐—ฐ๐˜๐˜‚๐—ฎ๐—น๐—น๐˜† ๐˜„๐—ผ๐—ฟ๐—ธ. | Andreas Horn
๐—ง๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐—ต๐—ฎ๐—ป๐—ฑ๐˜€ ๐—ฑ๐—ผ๐˜„๐—ป ๐—ผ๐—ป๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐—•๐—˜๐—ฆ๐—ง ๐˜ƒ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ผ๐—ณ ๐—ต๐—ผ๐˜„ ๐—Ÿ๐—Ÿ๐— ๐˜€ ๐—ฎ๐—ฐ๐˜๐˜‚๐—ฎ๐—น๐—น๐˜† ๐˜„๐—ผ๐—ฟ๐—ธ. | Andreas Horn
๐—ง๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐—ต๐—ฎ๐—ป๐—ฑ๐˜€ ๐—ฑ๐—ผ๐˜„๐—ป ๐—ผ๐—ป๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐—•๐—˜๐—ฆ๐—ง ๐˜ƒ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ผ๐—ณ ๐—ต๐—ผ๐˜„ ๐—Ÿ๐—Ÿ๐— ๐˜€ ๐—ฎ๐—ฐ๐˜๐˜‚๐—ฎ๐—น๐—น๐˜† ๐˜„๐—ผ๐—ฟ๐—ธ. โฌ‡๏ธ ๐˜“๐˜ฆ๐˜ต'๐˜ด ๐˜ฃ๐˜ณ๐˜ฆ๐˜ข๐˜ฌ ๐˜ช๐˜ต ๐˜ฅ๐˜ฐ๐˜ธ๐˜ฏ: ๐—ง๐—ผ๐—ธ๐—ฒ๐—ป๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป & ๐—˜๐—บ๐—ฏ๐—ฒ๐—ฑ๐—ฑ๐—ถ๐—ป๐—ด๐˜€: - Input text is broken into tokens (smaller chunks). - Each token is mapped to a vector in high-dimensional space, where words with similar meanings cluster together. ๐—ง๐—ต๐—ฒ ๐—”๐˜๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ผ๐—ป ๐— ๐—ฒ๐—ฐ๐—ต๐—ฎ๐—ป๐—ถ๐˜€๐—บ (๐—ฆ๐—ฒ๐—น๐—ณ-๐—”๐˜๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ผ๐—ป): - Words influence each other based on context โ€” ensuring "bank" in riverbank isnโ€™t confused with financial bank. - The Attention Block weighs relationships between words, refining their representations dynamically. ๐—™๐—ฒ๐—ฒ๐—ฑ-๐—™๐—ผ๐—ฟ๐˜„๐—ฎ๐—ฟ๐—ฑ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ๐˜€ (๐——๐—ฒ๐—ฒ๐—ฝ ๐—ก๐—ฒ๐˜‚๐—ฟ๐—ฎ๐—น ๐—ก๐—ฒ๐˜๐˜„๐—ผ๐—ฟ๐—ธ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด) - After attention, tokens pass through multiple feed-forward layers that refine meaning. - Each layer learns deeper semantic relationships, improving predictions. ๐—œ๐˜๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป & ๐——๐—ฒ๐—ฒ๐—ฝ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด - This process repeats through dozens or even hundreds of layers, adjusting token meanings iteratively. - This is where the "deep" in deep learning comes in โ€” layers upon layers of matrix multiplications and optimizations. ๐—ฃ๐—ฟ๐—ฒ๐—ฑ๐—ถ๐—ฐ๐˜๐—ถ๐—ผ๐—ป & ๐—ฆ๐—ฎ๐—บ๐—ฝ๐—น๐—ถ๐—ป๐—ด - The final vector representation is used to predict the next word as a probability distribution. - The model samples from this distribution, generating text word by word. ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐—บ๐—ฒ๐—ฐ๐—ต๐—ฎ๐—ป๐—ถ๐—ฐ๐˜€ ๐—ฎ๐—ฟ๐—ฒ ๐—ฎ๐˜ ๐˜๐—ต๐—ฒ ๐—ฐ๐—ผ๐—ฟ๐—ฒ ๐—ผ๐—ณ ๐—ฎ๐—น๐—น ๐—Ÿ๐—Ÿ๐— ๐˜€ (๐—ฒ.๐—ด. ๐—–๐—ต๐—ฎ๐˜๐—š๐—ฃ๐—ง). ๐—œ๐˜ ๐—ถ๐˜€ ๐—ฐ๐—ฟ๐˜‚๐—ฐ๐—ถ๐—ฎ๐—น ๐˜๐—ผ ๐—ต๐—ฎ๐˜ƒ๐—ฒ ๐—ฎ ๐˜€๐—ผ๐—น๐—ถ๐—ฑ ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—ต๐—ผ๐˜„ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐—บ๐—ฒ๐—ฐ๐—ต๐—ฎ๐—ป๐—ถ๐—ฐ๐˜€ ๐˜„๐—ผ๐—ฟ๐—ธ ๐—ถ๐—ณ ๐˜†๐—ผ๐˜‚ ๐˜„๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐˜€๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—น๐—ฒ, ๐—ฟ๐—ฒ๐˜€๐—ฝ๐—ผ๐—ป๐˜€๐—ถ๐—ฏ๐—น๐—ฒ ๐—”๐—œ ๐˜€๐—ผ๐—น๐˜‚๐˜๐—ถ๐—ผ๐—ป๐˜€. Here is the full video from 3Blue1Brown with exaplantion. I highly recommend to read, watch and bookmark this for a further deep dive: https://lnkd.in/dAviqK_6 ๐—œ ๐—ฒ๐˜…๐—ฝ๐—น๐—ผ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜๐˜€ โ€” ๐—ฎ๐—ป๐—ฑ ๐˜„๐—ต๐—ฎ๐˜ ๐˜๐—ต๐—ฒ๐˜† ๐—บ๐—ฒ๐—ฎ๐—ป ๐—ณ๐—ผ๐—ฟ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€ โ€” ๐—ถ๐—ป ๐—บ๐˜† ๐˜„๐—ฒ๐—ฒ๐—ธ๐—น๐˜† ๐—ป๐—ฒ๐˜„๐˜€๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ. ๐—ฌ๐—ผ๐˜‚ ๐—ฐ๐—ฎ๐—ป ๐˜€๐˜‚๐—ฏ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ: https://lnkd.in/dbf74Y9E | 48 comments on LinkedIn
ยทlinkedin.comยท
๐—ง๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐—ต๐—ฎ๐—ป๐—ฑ๐˜€ ๐—ฑ๐—ผ๐˜„๐—ป ๐—ผ๐—ป๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐—•๐—˜๐—ฆ๐—ง ๐˜ƒ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ผ๐—ณ ๐—ต๐—ผ๐˜„ ๐—Ÿ๐—Ÿ๐— ๐˜€ ๐—ฎ๐—ฐ๐˜๐˜‚๐—ฎ๐—น๐—น๐˜† ๐˜„๐—ผ๐—ฟ๐—ธ. | Andreas Horn
Scientists just published something in Nature that will scare every marketer, leader, and anyone else who thinks they understand human choice.
Scientists just published something in Nature that will scare every marketer, leader, and anyone else who thinks they understand human choice.
Scientists just published something in Nature that will scare every marketer, leader, and anyone else who thinks they understand human choice. Researchers created an AI called "Centaur" that can predict human behavior across ANY psychological experiment with disturbing accuracy. Not just one narrow task. Any decision-making scenario you throw at it. Here's the deal: They trained this AI on 10 million human choices from 160 different psychology experiments. Then they tested it against the best psychological theories we have. The AI won. In 31 out of 32 tests. But here's the part that really got me... Centaur wasn't an algorithm built to study human behavior. It was a language model that learned to read us. The researchers fed it tons of behavioral data, and suddenly it could predict choices better than decades of psychological research. This means our decision patterns aren't as unique as we think. The AI found the rules governing choices we believe are spontaneous. Even more unsettling? When they tested it on brain imaging data, the AI's internal representations became more aligned with human neural activity after learning our behavioral patterns. It's not just predicting what you'll choose, it's learning to think more like you do. The researchers even demonstrated something called "scientific regret minimization"โ€”using the AI to identify gaps in our understanding of human behavior, then developing better psychological models. Can a model based on Centaur be tuned for how customers behave? Companies will know your next purchasing decision before you make it. They'll design products you'll want, craft messages you'll respond to, and predict your reactions with amazing accuracy. Understanding human predictability is a competitive advantage today. Until now, that knowledge came from experts in behavioral science and consumer behavior. Now, there's Centaur. Here's my question: If AI can decode the patterns behind human choice with this level of accuracy, what does that mean for authentic decision-making in business? Will companies serve us better with perfectly tailored offerings, or with this level of understanding lead to dystopian manipulation? What's your take on predictable humans versus authentic choice? #AI #Psychology #BusinessStrategy #HumanBehavior | 369 comments on LinkedIn
ยทlinkedin.comยท
Scientists just published something in Nature that will scare every marketer, leader, and anyone else who thinks they understand human choice.
There is perhaps no industry more fundamentally disrupted by AI than professional services.
There is perhaps no industry more fundamentally disrupted by AI than professional services.
There is perhaps no industry more fundamentally disrupted by AI than professional services. Here are some of the top insights in the excellent new ThomsonReuters Future of Professionals Report, drawing on a survey of over 2,000 professionals globally. The industry is based on professionals, so individual capability development - as shown in the image - is fundamental. However it is also about organizational transformation, with most far behind where they need to be. The report shows: ๐Ÿ“Š Strategy-first adopters dominate ROI. Having a visible AI roadmap makes all the difference: firms with a clear strategy are 3.5 ร— more likely to enjoy at least one concrete benefit from AI, and almost twice as likely to see revenue growth compared with ad-hoc adopters. โฑ๏ธ AI is freeing up 240 hours a year. Professionals expect generative AI to claw back about five hours a weekโ€”240 hours annuallyโ€”worth roughly US $19 k per head and a US-wide impact of US $32 billion for legal and tax-accounting alone. ๐Ÿšฆ Expectations outrun execution. While 80 % of respondents foresee AI having a high or transformational impact within five years, only 38 % think their own organisation will hit that level this year, and three in ten say their firm is moving too slowly. ๐Ÿง  Skill depth multiplies payoff. Employees with good or expert AI knowledge are 2.8 ร— more likely to report organisational gains, regular users are 2.4 ร— more likely, and those with explicit AI adoption goals are 1.8 ร— more likely to see benefits. ๐Ÿ… Leaders who walk the talk win. When leaders model new tech adoption, their people are 1.7 ร— likelier to harvest AI benefits; active tech investors double their odds, and firms that added transformation roles see a 1.5 ร— uplift. ๐ŸŽฏ Accuracy anxieties set a sky-high bar. A hefty 91 % believe computers must outperform humans for accuracy, and 41 % insist on 100 % correctness before trusting AI without reviewโ€”making reliability the top blocker to further investment. ๐ŸŒฑ Millennials are sprinting ahead. Millennials are adopting AI at nearly twice the rate of Baby Boomers, underscoring a generational divide that could widen capability gaps if left unaddressed. ๐Ÿ› ๏ธ Tech-skill shortages stall teams. Almost half (46 %) of teams report skill gaps, with 31 % pointing to deficits in technology and data know-howโ€”outpacing gaps in traditional domain expertise or soft skills. ๐Ÿ”„ Service models are already shifting. Twenty-six percent of firms launched new advisory offerings in the past year, yet only 13 % have rolled out AI-powered services; meanwhile, a third are moving away from hourly billing and a quarter of in-house clients reward flexible fee structures. ๐Ÿ”— Goals and strategy are often misaligned. Two-thirds (65 %) of professionals who set personal AI goals donโ€™t know of any corporate AI strategy, while 38 % of organisations with a strategy give staff no personal targetsโ€”fuel for inconsistent, inefficient adoption
ยทlinkedin.comยท
There is perhaps no industry more fundamentally disrupted by AI than professional services.
How AI ready ist your L&D team?
How AI ready ist your L&D team?
So, it finally happened, I spent a week โ€˜vibe codingโ€™ an app with an AI app builder. I learnt a ton from this experience, which Iโ€™ll be sharing more on in an upcoming premium edition of the Steal These Thoughts! newsletter. Until then, here's what I built and why. Just over a year ago (feels like an eternity these days), I shared an article with you on how you can assess the AI readiness of your L&D team in 4 levels. At the time, I thought, โ€œThis might be a good use case for an app experimentโ€, but the AI-powered app builders werenโ€™t so great then. Now, itโ€™s a whole new world, and Iโ€™ve spent about 30 hours creating an AI Readiness Assessment tool to live beside this article. The journey felt simple-ish, but it was not easy, friend. I now have a newfound respect for devs because the debugging and constant blockers have been traumatic ๐Ÿ˜‚. While the tool is available to use, it is most certainly a prototype, so expect bugs, glitches and weird things to happen. For now, Iโ€™d love for you to try it out, give me your feedback (worth developing or should I kill?) and any other thoughts. Watch the demo on how to use the tool โ†“ ๐Ÿ”— to the tool: https://lnkd.in/efJaPJF5 ๐Ÿ“ง Share your FB to support@stealthesethoughts.com #education #artificialintelligence
ยทlinkedin.comยท
How AI ready ist your L&D team?
ChatGPT 4o System Prompt (Juni 2025)
ChatGPT 4o System Prompt (Juni 2025)
ChatGPT 4o System Prompt (Juni 2025) Der Systemprompt zu ChatGPT 4o wurde geleaked. Wer glaubt, ein Sprachmodell wie ChatGPT-4o sei einfach ein gut trainiertes neuronales Netz, denkt zu kurz. Was die Interaktion prรคzise, professionell und verlรคsslich macht, geschieht nicht allein im Modell, sondern in seiner systemischen Steuerung โ€“ dem System Prompt. Er ist das unsichtbare Drehbuch, das vorgibt, wie das Modell denkt, fรผhlt (im รผbertragenen Sinne), recherchiert und mit dir interagiert. 1. Struktur: Modular, regelbasiert, bewusst orchestriert Der System Prompt besteht aus sauber getrennten Funktionsblรถcken: โ€ข Rollensteuerung: z.โ€ฏB. sachlich, ehrlich, kein Smalltalk โ€ข Tool-Integration: Zugriff auf Analyse-, Bild-, Web- und Dateitools โ€ข Logikmodule: zur Kontrolle von Frische, Quelle, Zeitraum, Dateityp Jedes Modul ist deklarativ und deterministisch formuliert โ€“ die Antwortlogik folgt festen Bahnen. Das Ergebnis: Transparenz und Wiederholbarkeit, auch bei komplexen Anforderungen. โธป 2. Kontrollmechanismen: Qualitรคt durch gezielte Einschrรคnkung Um Relevanz sicherzustellen, greifen mehrere Filter: โ€ข QDF (Query Deserves Freshness): Sorgt fรผr zeitlich passende Ergebnisse โ€“ von โ€žzeitlosโ€œ bis โ€žtagesaktuellโ€œ. โ€ข Time-Frame-Filter: Nur aktiv bei expliziten Zeitbezรผgen, nie willkรผrlich. โ€ข Source-Filter: Bestimmt, ob z.โ€ฏB. Slack, Google Drive oder Web befragt wird. โ€ข Filetype-Filter: Fokussiert auf bestimmte Dateiformate (z.โ€ฏB. Tabellen, Prรคsentationen). Diese Filter verhindern รœberinformation โ€“ sie schรคrfen das Suchfeld und heben die Trefferqualitรคt. โธป 3. Antwortarchitektur: Keine Texte, sondern verwertbare Ergebnisse Antworten folgen strengen Regeln: โ€ข Immer strukturiert im Markdown-Format โ€ข Sachlich, kompakt, faktenbasiert โ€ข Keine Dopplungen, kein Stilspiel, kein rhetorischer Lรคrm Ziel: Klarheit, ohne Nachbearbeitung. Der Output ist verwendungsfรคhig, nicht bloรŸ informativ. โธป 4. Prompt Engineering: Spielraum fรผr Profis Der Prompt ist nicht editierbar โ€“ aber bespielbar. Wer seine Mechanik versteht, kann gezielt: โ€ข Tools รผber semantische Trigger aktivieren (โ€žSlackโ€œ, โ€žaktuellโ€œ, โ€žPDFโ€œ) โ€ข Formatvorgaben in Prompts durchsetzen โ€ข Komplexe Interaktionen als sequentielle Promptketten modellieren โ€ข Domรคnenspezifische Promptbibliotheken entwickeln Fazit: Prompt Engineers, die das System verstehen, bauen keine Texte โ€“ sie bauen Steuerlogiken. โธป Was kรถnnen wir daraus lernen? 1. Prรคzision ist kein Zufall, sondern Architektur. 2. Gute Antworten beginnen nicht bei der Modellleistung, sondern beim Kontextmanagement. 3. Wer Prompts baut, baut Systeme โ€“ mit Regeln, Triggern und Interaktionslogik. 4. KI wird produktiv, wenn Struktur auf Intelligenz trifft. Ob Beratung, Entwicklung oder Wissensarbeit โ€“ der System Prompt zeigt: Je klarer die Regeln im Hintergrund, desto stรคrker die Wirkung im Vordergrund.
ยทlinkedin.comยท
ChatGPT 4o System Prompt (Juni 2025)
๐—ง๐—ต๐—ฒ United Nations ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐—ฝ๐—ฒ๐—ฑ ๐—ฎ ๐—ป๐—ฒ๐˜„ ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜ ๐—ผ๐—ป ๐—”๐—œ ๐—ฎ๐—ป๐—ฑ ๐—ต๐˜‚๐—บ๐—ฎ๐—ป ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜: โฌ‡๏ธ While the world chases the next frontier model or AGI milestone, the UN cuts deeper: Human development has flatlined (especially in the global South). Progress stalled. Inequality is rising. Trust crumbling. No real bounce-back since Covid. And right in the middle of that โ€” AI shows up.
๐—ง๐—ต๐—ฒ United Nations ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐—ฝ๐—ฒ๐—ฑ ๐—ฎ ๐—ป๐—ฒ๐˜„ ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜ ๐—ผ๐—ป ๐—”๐—œ ๐—ฎ๐—ป๐—ฑ ๐—ต๐˜‚๐—บ๐—ฎ๐—ป ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜: โฌ‡๏ธ While the world chases the next frontier model or AGI milestone, the UN cuts deeper: Human development has flatlined (especially in the global South). Progress stalled. Inequality is rising. Trust crumbling. No real bounce-back since Covid. And right in the middle of that โ€” AI shows up.
AI could drive a new era. Or it could deepen the cracks. It all comes down to: How societies choose to use AI to empower people โ€” or fail to. ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ 14 ๐—ธ๐—ฒ๐˜† ๐˜๐—ฎ๐—ธ๐—ฒ๐—ฎ๐˜„๐—ฎ๐˜†๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐˜€๐˜๐—ผ๐—ผ๐—ฑ ๐—ผ๐˜‚๐˜ ๐˜๐—ผ ๐—บ๐—ฒ: โฌ‡๏ธ 1. Most AI systems today are designed in cultures that donโ€™t reflect the majority world. โ†’ ChatGPT answers are most aligned with very high HDI countries. Thatโ€™s a problem. 2. The real risk isnโ€™t AI superintelligence. Itโ€™s โ€œso-so AI.โ€ โ†’ Tools that destroy jobs without improving productivity are quietly eroding economies from the inside. 3. Every person is becoming an AI decision-maker. โ†’ The future isnโ€™t shaped by OpenAI or Google alone. Itโ€™s shaped by how we all choose to use this tech, every day. 4. AI hype is costing us agency. โ†’ The more we believe it will solve everything, the less we act ourselves. 5. People expect augmentation, not replacement. โ†’ 61% believe AI will "enhance" their jobs. But only if policy and incentives align. 6. The age of automation skipped the global south. The age of augmentation must not. โ†’ Otherwise, we widen the digital divide into a chasm. 7. Augmentation helps the least experienced workers the most. โ†’ From call centers to consulting, AI boosts performance fastest at the entry-level. 9. Narratives matter. โ†’ If all we talk about is risk and control, we miss the transformative potential to reimagine development. 10. Wellbeing among young people is collapsing. โ†’ And yes, digital tools (including AI) are a key driver. Especially in high HDI countries. 11. Human connections are becoming more valuable. Not less. โ†’ As machines get better at faking it, the real thing becomes rarer โ€” and more needed. 12. Assistive AI is quietly revolutionizing inclusion. โ†’ Tools like sign language translation and live captioning are expanding access โ€” but only if theyโ€™re accessible. 13. AI benchmarks must change. โ†’ We need to measure "how AI advances human development", not just how well it performs on tests. 14. The new divide is not just about access. Itโ€™s about how countries "use" AI. โ†’ Complement vs. compete. Empower vs. automate. According to the UN: The old question was: โ€œWhat can AI do?โ€ The better question is: โ€œWhat will we "choose" to do with it?โ€ More in the comments and report below. Enjoy. ๐—œ ๐—ฒ๐˜…๐—ฝ๐—น๐—ผ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜๐˜€ โ€” ๐—ฎ๐—ป๐—ฑ ๐˜„๐—ต๐—ฎ๐˜ ๐˜๐—ต๐—ฒ๐˜† ๐—บ๐—ฒ๐—ฎ๐—ป ๐—ณ๐—ผ๐—ฟ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€ โ€” ๐—ถ๐—ป ๐—บ๐˜† ๐˜„๐—ฒ๐—ฒ๐—ธ๐—น๐˜† ๐—ป๐—ฒ๐˜„๐˜€๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ. ๐—ฌ๐—ผ๐˜‚ ๐—ฐ๐—ฎ๐—ป ๐˜€๐˜‚๐—ฏ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ: https://lnkd.in/dbf74Y9E | 41 comments on LinkedIn
ยทlinkedin.comยท
๐—ง๐—ต๐—ฒ United Nations ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐—ฝ๐—ฒ๐—ฑ ๐—ฎ ๐—ป๐—ฒ๐˜„ ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜ ๐—ผ๐—ป ๐—”๐—œ ๐—ฎ๐—ป๐—ฑ ๐—ต๐˜‚๐—บ๐—ฎ๐—ป ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜: โฌ‡๏ธ While the world chases the next frontier model or AGI milestone, the UN cuts deeper: Human development has flatlined (especially in the global South). Progress stalled. Inequality is rising. Trust crumbling. No real bounce-back since Covid. And right in the middle of that โ€” AI shows up.
Today's L&D is more than just content.
Today's L&D is more than just content.
Today's L&D is more than just content. Or at least it should be. When we think about AI in L&D, we often think about AI in learning design. Yet, to meet the needs of the business, L&D leaders need to orchestrate design, data, decisions and dialogue- incidentally, these are all things that AI can help with. In ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐๐ž๐ฌ๐ข๐ ๐ง, we already extensively use AI not just for content production, but also for user research, as a sparring partner and a sounding board (that was one of the top write-in use cases in mine and Donald's AI in L&D survey last year). In ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐ฌ๐ญ๐ซ๐š๐ญ๐ž๐ ๐ฒ, AI can help make sense of business, people and skills data (featured use case: asking AI to find gaps in learning or performance support provision in your organisation), or work as a thought partner to help you bridge learning and business strategy. Crucially, it can also help you engage stakeholders by preparing you for conversations and tailoring your communications to different audiences. In terms of ๐ฉ๐ž๐ซ๐ฌ๐จ๐ง๐š๐ฅ๐ข๐ฌ๐ž๐ ๐ฌ๐ฎ๐ฉ๐ฉ๐จ๐ซ๐ญ, AI interacts directly with employees to help them do their jobs: practise tricky conversations through role-plays and personalised feedback, prioritise and contextualise learning content to their needs, and, lately, retrieve exactly the information they need from almost anywhere in the companyโ€™s knowledge base. Finally, in ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐จ๐ฉ๐ž๐ซ๐š๐ญ๐ข๐จ๐ง๐ฌ, AI can help do more than just draft emails and reports. Working together with humans, AI can help select the right vendors for the learning ecosystem, streamline employee help desk operations, analyse, make sense of and action on different kinds of data generated in L&D, and, of course, help L&D communicate with the rest of the business. Researcher, producer, thought partner, communicator โ€” if your organisation only uses AI to write scripts, youโ€™re leaving three quarters of the L&D value chain on the table. I like a good table, and I hope this one will help you think about how to get more value out of your AI use. --- P.S. I spent quite a lot of time arguing with myself about the dots on the table. Feel free to disagree and suggest AI roles or use cases that I have missed! Nodes #GenAI #Learning #Talent #FutureOfWork #AIAdoption | 50 comments on LinkedIn
ยทlinkedin.comยท
Today's L&D is more than just content.
Distinguishing performance gains from learning when using generative AI - published in Nature Reviews Psychology!
Distinguishing performance gains from learning when using generative AI - published in Nature Reviews Psychology!
Excited to share our latest commentary just published in Nature Reviews Psychology! โœจ ""ย  ย  Generative AI tools such as ChatGPT are reshaping education, promising improvements in learner performance and reduced cognitive load. ๐Ÿค– ๐Ÿค”But here's the catch: Do these immediate gains translate into deep and lasting learning? Reflecting on recent viral systematic reviews and meta-analyses on #ChatGPT and #Learning, we argue that educators and researchers need to clearly differentiate short-term performance benefits from genuine, durable learning outcomes. ๐Ÿ’ก ๐Ÿ“Œ Key takeaways: โœ… Immediate boosts with generative AI tools don't necessarily equal durable learning โœ… While generative AI can ease cognitive load, excessive reliance might negatively impact critical thinking, metacognition, and learner autonomy โœ… Long-term, meaningful skill development demands going beyond immediate performance metrics ๐Ÿ”– Recommendations for future research and practice: 1๏ธโƒฃ Shift toward assessing retention, transfer, and deep cognitive processing 2๏ธโƒฃ Promote active learner engagement, critical evaluation, and metacognitive reflection 3๏ธโƒฃ Implement longitudinal studies exploring the relationship between generative AI assistance and prior learner knowledge Special thanks ๐Ÿ™ to my amazing collaborators and mentors, Samuel Greiff, Jason M. Lodge, and Dragan Gasevic, for their invaluable contributions, guidance, and encouragement. A big shout-out to Dr. Teresa Schubert for her insightful comments and wonderful support throughout the editorial process! ๐ŸŒŸ ๐Ÿ‘‰ Full article here: https://lnkd.in/g3YDQUrH ๐Ÿ‘‰ Full-text Access (view-only version): https://rdcu.be/erwIt #GenerativeAI #ChatGPT #AIinEducation #LearningScience #Metacognition #Cognition #EdTech #EducationalResearch #BJETspecialIssue #NatureReviewsPsychology #FutureOfEducation #OpenScience
ยทlinkedin.comยท
Distinguishing performance gains from learning when using generative AI - published in Nature Reviews Psychology!