ð³ Durchblick im ChatGPT-Dschungel: Welches Modell passt wirklich zu dir?
Der groÃe Vergleich von GPT-4o, o3, o4 mini, 4.1 und mehr âš Ein persönlicher Erfahrungsbericht und ein Deep Research â speziell fÃŒr mein Netzwerk.
How AI Is Blowing Up The Corporate Learning Market: The Whole Story
This week I detail the whole story: how the $360 billion corporate learning market is being blown up by AI.This tidal wave has now arrived, with every major ...
ð€ Interesting insights from Anthropicnes recent study on how university students are leveraging AI! ð
Key findings:
- STEM students, particularly in Computer Science, are early adopters of AI tools like Claude, accounting for 36.8% of conversations despite representing only 5.4% of U.S. bachelor's degrees.
- Students interact with AI in four primary ways: Direct Problem Solving, Direct Output Creation, Collaborative Problem Solving, and Collaborative Output Creation, each occurring at similar rates.
- Claude is mainly used for creating and improving educational content (39.3%), technical explanations (33.5%), and higher-order cognitive functions like Creating (39.8%) and Analyzing (30.2%).
Students are not just seeking quick answers; they're using AI as a collaborative tool to enhance their learning journey. This trend highlights the transformative potential of AI in higher education. And it shows: students are smarter than many teachers think or fear.
I also liked this graphic which however is also nice marketing showing Claude being used for higher order thinking via creation something new⊠which is the strength of LLMs obviously.
#AIinEducation #HigherEducation #STEM #Innovation #FutureofLearning
ð§ðŒðœ ðð²ð»ð²ð¿ð®ðð¶ðð² ðð ð§ð²ð¿ðºð ð¬ðŒð ðŠðµðŒðð¹ð± ðð»ðŒð â ðð ðœð¹ð®ð¶ð»ð²ð± ðŠð¶ðºðœð¹ð
ð. ððð (ðð®ð¿ðŽð² ðð®ð»ðŽðð®ðŽð² ð ðŒð±ð²ð¹)
â Helps computers understand and write human-like text
â Examples: GPT-4, Claude, Gemini
â Used in: Chatbots, coding tools, content generation
ð®. ð§ð¿ð®ð»ðð³ðŒð¿ðºð²ð¿ð
â The tech behind all modern AI models
â Let models understand meaning, context, and order of words
â Examples: BERT, GPT
ð¯. ð£ð¿ðŒðºðœð ðð»ðŽð¶ð»ð²ð²ð¿ð¶ð»ðŽ
â Writing better instructions to get better AI answers
â Includes system prompts, step-by-step prompts, and safety rules
ð°. ðð¶ð»ð²-ð§ðð»ð¶ð»ðŽ
â Training an AI model on your data
â Helps tailor it for specific tasks like legal, medical, or financial use cases
ð±. ððºð¯ð²ð±ð±ð¶ð»ðŽð
â A way for AI to understand meaning and relationships between words or documents
â Used in search engines and recommendation systems
ð². ð¥ðð (ð¥ð²ðð¿ð¶ð²ðð®ð¹-ðððŽðºð²ð»ðð²ð± ðð²ð»ð²ð¿ð®ðð¶ðŒð»)
â Combines AI with a database or document store
â Helps AI give more accurate, fact-based answers
ð³. ð§ðŒðžð²ð»ð
â The chunks of text AI reads and writes
â Managing them controls cost and performance
ðŽ. ðð®ð¹ð¹ðð°ð¶ð»ð®ðð¶ðŒð»
â When AI gives wrong or made-up answers
â Can be fixed with fact-checking and better prompts
ðµ. ðð²ð¿ðŒ-ðŠðµðŒð ðð²ð®ð¿ð»ð¶ð»ðŽ
â When AI can perform a task without being trained on it
â Saves time on training
ðð¬. ððµð®ð¶ð»-ðŒð³-ð§ðµðŒððŽðµð
â AI explains its answer step-by-step
â Helps with complex reasoning tasks
ðð. ððŒð»ðð²ð ð ðªð¶ð»ð±ðŒð
â The amount of info AI can see at once
â Larger windows help with longer documents or conversations
ðð®. ð§ð²ðºðœð²ð¿ð®ððð¿ð²
â Controls how creative or predictable AI is
â Lower values = more accurate; higher values = more creative
ðªðµð®ðâð ððŒðºð¶ð»ðŽ ð¡ð²ð ð?
â Multimodal AI (text, images, audio together)
â Smaller, faster models
â Safer, ethical AI (Constitutional AI)
â Agentic AI (autonomous, task-completing agents)
Knowing the terms is just step one â what really matters is how you ð¶ðŽðŠ them to build better solutions.
| 51 comments on LinkedIn
What Does AI-Native Mean? How "AI-First" Apps Change HR.
This week I discuss this massive shift toward âAI-Nativeâ applications and systems which are radically different from traditional HR Tech, with a particular ...
ð¢ðœð²ð»ðð ð·ððð ðœðð¯ð¹ð¶ððµð²ð± ððµð²ð¶ð¿ ðŒð³ð³ð¶ð°ð¶ð®ð¹ ðð£ð§-4.1 ðœð¿ðŒðºðœðð¶ð»ðŽ ðŽðð¶ð±ð²! It provides a detailed guide on how to steer GPT-4.1 with precision, including examples, tips, and advanced techniques.
You can access the full version for free below. â¬ïž
ðð» ðððºðºð®ð¿ð, ðµð²ð¿ð² ð®ð¿ð² ððµð² ðžð²ð ð²ð¹ð²ðºð²ð»ðð:
â Be Clear with Your Instructions: GPT-4.1 is really good at following directions, but only if you're specific. The more clear and direct your prompt, the better the response.
â Break Down Complex Tasks: If you're working on something complicated, ask GPT-4.1 to âthink step by step.â It helps the model give more accurate and thoughtful answers.
â Use Structure: If you need to share a lot of info, use clear structureâlike markdown or bullet points. This helps GPT-4.1 understand and organize the info better.
â Format Your Prompts with Clear Sections: Structure your prompts for easier comprehension:
  - Role and Objective
  - Instructions (with subcategories)
  - Reasoning Steps
  - Output Format
  - Examples
  - Final instructions
â Put Important Instructions at the Start and End: For longer prompts, put your key instructions both at the beginning and the end. This helps the model stay on track.
â Guide It with Reminders: If you're designing a workflow or solving a problem, include reminders like âkeep going until itâs fully resolvedâ or âplan carefully before acting.â This keeps the model focused.
â Use the Token Window Wisely: GPT-4.1 can handle a huge amount of text, but too much at once can slow it down. Be strategic about how much context you provide.
â Balance Internal and External Knowledge: For factual questions, tell GPT-4.1 to either âonly use the provided contextâ or to mix that context with general knowledge. This helps you get the most accurate results.
ðð» ððµðŒð¿ð: ð§ðµð² ðžð²ð ððŒ ððð¶ð»ðŽ ðð£ð§-4.1 ð²ð³ð³ð²ð°ðð¶ðð²ð¹ð ð¶ð ð°ð¹ð²ð®ð¿, ððð¿ðð°ððð¿ð²ð± ðœð¿ðŒðºðœðð ððµð®ð ðŽðð¶ð±ð² ð¶ð ððŒðð®ð¿ð± ððµð² ð¿ð¶ðŽðµð ð®ð»ððð²ð¿. ððâð ð®ð¹ð¹ ð®ð¯ðŒðð ð®ððžð¶ð»ðŽ ððµð² ð¿ð¶ðŽðµð ðŸðð²ððð¶ðŒð»ð ð¶ð» ððµð² ð¿ð¶ðŽðµð ðð®ð!
Access it here or download it below: https://lnkd.in/dCm6DeFW | 59 comments on LinkedIn
97% of you are probably blissfully unaware of AI agents. However, theyâre here and evolving fast!
I've covered an explainer of AI agents for non-techies before, see the comments for a link to that.
For most non-techies, AI is viewed as one entity doing every thing on its own.
With agents, we can create a team of specialists.
Thatâs the idea behind multi-agent AI systems
This image (from the brilliant folks at LangGraph) shows different ways you can set up teams of AI âagents.â
Think of each agent like a little digital worker with a specific role - one plans, another checks facts, one executes tasks, and another reviews the results.
Like any good team, they talk to each other, share ideas, and back each other up.
Now, let's explain that image:
1ïžâ£ Single Agent
This is your classic setup with one AI model doing all the work. It can use tools, but itâs working solo. Smart, but overworked.
2ïžâ£ Network
Here, agents all talk to each other like a group chat. Everyoneâs sharing, checking, and helping out. Great for collaboration, but can get noisy.
3ïžâ£ Supervisor
This is the manager model where one central AI supervises others. It gives instructions and checks in. A bit like a project lead guiding a team.
4ïžâ£ Supervisor as Tools
Flip it around: the main AI treats the others as tools. It doesnât chat with them it just uses them to get stuff done. Efficient, but not very democratic.
5ïžâ£ Hierarchical
This is like an org chart. Big boss on top, middle managers below, then the doers. Neat, structured, scalable.
6ïžâ£ Custom
Everything everywhere all at once. No strict structureâjust doing what works to get the job done. It can look a bit messy, but itâs great for handling tricky tasks that donât fit in a neat box.
â So why does this matter?
Traditional AI is like having one brain trying to do everything.
But now, we can build teams of AIs, each focused on a taskâplanning, checking, executing, or reviewing.
Multi-agent systems might sound like Sci-Fi but they're already at work today.
â³ Image Credit: Google Agents Companion & LangGraph Multi-agent systems
ð Source: Agents Companion Report 2025 by Google
#education #artificialintelligence #learninganddevelopment
2023: âAI wird meinen Job ersetzen.â 2024: âAI ist mein Copilot.â 2025: âAI ersetzt keine Freundschaft.
2023: âAI wird meinen Job ersetzen.â
2024: âAI ist mein Copilot.â
2025: âAI ersetzt keine Freundschaft. Aber manchmal hilft sie beim Denken.â
Super spannendes Lesefutter von der Harvard Business Review. Marc Zao-Sanders hatte sich nach 12 Monaten seinen Artikel aus 2024 wieder angeschaut und ein Update veröffentlicht, wie viele von uns inzwischen wirklich mit Gen AI Tools arbeiten.
Spoiler: Der Hype ist vorbei â und das ist gut so.
Denn es wird super konkret:
_FÌhrungskrÀfte nutzen GPTs zur Strategieentwicklung.
_Manager bauen sich ihre eigenen Helferlings.
_Entwickler sparen 56â¯% Zeit beim Coden.
_Teams automatisieren repetitive Tasks â und schaffen Raum fÃŒr KreativitÀt.
Die Grenze zwischen âBusiness Use Caseâ und âPrivate Use Caseâ verschwimmt zunehmend. Workflows, die am KÃŒchentisch anfangen
und in der Vorstandsetage landen. Die spannendste Erkenntnis:
Der meistgenutzte GenAI-Use-Case 2025 ist -
Nicht Coding. Nicht PrÀsentationen. Nicht Strategie.
Sondern: Therapie.
ð§ GesprÀche mit Chatbots ÃŒber Stress, Selbstzweifel, Sinnfragen.
ð Journaling mit KI als stillem GegenÃŒber.
ðªSelbstreflexion â strukturiert, aber menschlich.
Laut HBR ist âmentale Gesundheitâ als Use Case fÃŒr GenAI noch vor Business Productivity.
Tools wie ChatGPT weniger Roboter als Spiegel.
Dass wir in einer Welt leben, in der vielen genau das fehlt: ein geschÃŒtzter Raum zum Denken, Reden, FÃŒhlen.
Und dass KI vielleicht nicht nur Arbeit, sondern auch Zugang demokratisiert â zu Support, der vorher unerschwinglich war.
ð Vielleicht ist das die eigentliche Disruption.
Performance Support auf einem neuen Level mit der Share-Funktion von Google AI Studio
ð¡ Wie viel Power steckt im Google AI Studio? Live-Test der âShare Screenâ-Funktion als Performance Support! ð¥ïžIn diesem Video nehmen wir die Share Screen-F...
Everything Announced at Google Cloud Next in 12 Minutes
Catch the top moments from the Google Cloud Next keynote presentation, featuring CEO Thomas Kurian on AI breakthroughs, along with key announcements and real...
Bei KÃŒnstlicher Intelligenz an der Hochschule denken die meisten an KI in der Lehre. Sollen Studierende KI nutzen und falls ja, im Unterricht, bei den Ãbungen oder zu Hause bei den Ausarbeitungen? Sind bestehende PrÃŒfungsformen noch zeitgemÀÃ? Sollen Dozenten zeigen, wie KI benutzt werden kann und s
AI Adoption in der Personalentwicklung - KI Transformation aktiv gestalten
In dem AI Adoption in L&D Circle des New Learning Lab lernt ihr, die KI Transformation bei euch aktiv mitzugestalten.created by Jan Foelsing#aiadoption #ai #...
Gratis und das BESTE LLM auf zig Benchmarks. Wie hat Google das geschafft? Und vor allem, was bedeutet das fÃŒr uns?Schnappt euch hier Incogni mit meinem Code...
I ve rolled out AI to 30+ companies and 25,000+ employees. Here is what I learned.
Implementing AI isn't just about integrating new technology. It's about transforming the way people work. Without a structured change management approach, AI initiatives can face resistance, underperformance, and missed opportunities.
Here are the key success factors for good AI change management:
â Clear vision and purpose:
Define the goals and benefits of AI in your company. Make it aspiring.
â Strong leadership:
Leaders must champion the change and guide their teams. Don't forget to communicate clear expectations.
â Effective communication:
Regular updates and transparency to manage expectations and take away fear.
â Evangelists:
Elect "Pro users" in each department to provide instant support.
â Training and development:
Equip your team with the skills needed to leverage AI.
â AI platform:
Ensure the platform has excellent UX to drive user adoption and engagement. UX is not UI!
â AI agents:
Yes, this specific feature is key. Create and share AI agents that employees can use off the shelf. Significantly improves adoption!
At Zive, it's our mission to make work efficient and enjoyable for everyone. We provide the best platform for it. But it doesn't work without good change management. Thankfully, we have amazing partners who support our customers with it.
#AI #ChangeManagement #Leadership #Innovation #EmployeeEngagement #BusinessTransformation #UserExperience #AIagents | 18 comments on LinkedIn
KI-Anwendungen aufnehmen und klassifizieren: Aber wie?
KI-Anwendungen aufnehmen und klassifizieren: Aber wie?
Der AI Act verlangt eine Risikoklassifizierung von KI-Anwendungen und Systemen im Unternehmen.
DafÃŒrâŠ
Friends, this is the MOST IMPORTANT study on AI in 2025. The brilliant Ethan Mollick and team studied how AI impacts individuals and teams across Procter & Gamble - the results are stunning.
Friends, this is the MOST IMPORTANT study on AI in 2025. The brilliant Ethan Mollick and team studied how AI impacts individuals and teams across Procter & Gamble- the results are stunning. Hereâs what you need to know:
The "Cybernetic Teammate" study was conducted in Summer 2024 by a research from Harvard and Wharton, in partnership with Procter & Gamble.Â
++++++++++++++++++++
WHO WAS TESTED:
The study involved 776 P&G professionals and replicated P&G's product development process across four business units.
The experiment featured four distinct conditions:
- Individuals working alone without AI
- Individuals working alone with AI
- Teams of two specialists (one commercial expert, one technical R&D expert) working without AI
- Teams of two specialists working with AI
++++++++++++++++++++
KEY FINDINGS:
INDIVIDUAL PERFORMANCE:
AI improved individual performance by 37%
TEAM PERFORMANCE:
AI improved team performance by 39%
BREAKTHROUGH SOLUTIONS:
Teams using AI were 3x more likely to produce solutions in top 10% of quality
EFFICIENCY GAINS
Individuals using AI completed tasks 16.4% faster than those without
Teams with AI finished 12.7% faster than teams without AI
OUTPUT QUALITY
Despite working faster, AI-enabled groups produced substantially longer and more detailed solutions
EXPERTISE AND COLLABORATION EFFECTS
Breaking Down Silos!!
Without AI:
Clear professional silos existed â R&D specialists created technical solutions while Commercial specialists developed market-focused ideas
With AI:
Distinctions virtually disappeared â both types of specialists produced balanced solutions integrating technical and commercial perspectives
EXPERIENCE LEVELING:
Less experienced employees using AI performed at levels comparable to teams with experienced members
EMOTIONAL EXPERIENCE
Positive Emotions: AI users reported significantly higher levels of excitement, energy, and enthusiasm
Negative Emotions: AI users experienced less anxiety and frustration during work
Individual Experience: People working alone with AI reported emotional experiences comparable to or better than those in human teams
TEAM DYNAMICS
Solution Types:
Teams without AI showed a bimodal distribution (either technically or commercially oriented solutions)
Balanced Input:
AI appeared to reduce dominance effects, allowing more equal contribution from team members
Consistency:
Teams with AI showed more uniform, high-quality outputs compared to the variable results of standard teams
We'll be talking about this study for a while.
+++++++++++++++++++++++++++++
UPSKILL YOUR ORGANIZATION:
When your company is ready, we are ready to upskill your workforce at scale. Our Generative AI for Professionals course is tailored to enterprise and highly effective in driving AI adoption through a unique, proven behavioral transformation. Check out our website or shoot me a DM. | 133 comments on LinkedIn
KI-Ethik bei SAP: Verantwortungsvolle Innovation mit Bettina Laugwitz
In dieser Episode berichtet Dr. Bettina Laugwitz, die bei SAP das Thema KI-Ethik verantwortet, von SAPs Ansatz zur ethischen Entwicklung und Implementierung von kÃŒnstlicher Intelligenz.
Sehr spannende Studie von der Harvard Business School (03/2025) die aufzeigt, dass der Einsatz generativer KI (GenAI) die zentralen Aspekte von TeamarbeitâŠ
Sehr spannende Studie von der Harvard Business School (03/2025) die aufzeigt, dass der Einsatz generativer KI (GenAI) die zentralen Aspekte von TeamarbeitâŠ
One of my favourite reads from the last six months is Sequoia Capitalâs report exploring the evolution of generative AI and itâs implications for the messyâŠ
ðð ððŽð²ð»ðð ðð¶ð¹ð¹ ð¿ð²ððŒð¹ððð¶ðŒð»ð¶ðð² ð²ð»ðð²ð¿ðœð¿ð¶ðð² ððŒð¿ðžð³ð¹ðŒðð! Or Not? And what about the data?
"ðð ððŽð²ð»ðð ðð¶ð¹ð¹ ð¿ð²ððŒð¹ððð¶ðŒð»ð¶ðð² ð²ð»ðð²ð¿ðœð¿ð¶ðð² ððŒð¿ðžð³ð¹ðŒðð!"
ðð»ðð²ð¿ðœð¿ð¶ðð² ðð ðð¿ð²ð®ðº:
â Deploy AI Agents
â Automate everything
â Enjoy efficiency
ðð»ðð²ð¿ðœð¿ð¶ðð² ðð ð¥ð²ð®ð¹ð¶ðð:
â Messy, siloed, unreliable data
â AI hallucinations & compliance nightmares
â Enterprise AI initiatives stall as organizations spend more time fixing data issues than realizing AI-driven value.
The Hard Truth: AI (agents) aren't failingâdata strategies are. AI Agents are only as effective as the data beneath them. Without governed, high-quality data, AI adoption becomes an expensive experiment instead of a strategic advantage. Important to fix the data first.
Kudos for this image to Armand Ruiz!
| 258 comments on LinkedIn
Das KI-System âThe AI Scientistâ von Sakana AI hat eine⊠| Matthias Kindt
Das KI-System "The AI Scientist-v2" von Sakana AI hat eine wissenschaftliche Publikation erstellt, die den Peer-Review-Prozess bei einem Workshop der wichtigenâŠ
ð KI-generierte Inhalte und Urheberrecht: Wer haftet bei⊠| Zamina Ahmad
ð KI-generierte Inhalte und Urheberrecht:
Wer haftet bei Rechtsverletzungen?
Stell dir vor, du nutzt eine generative KI, um ein Marketing-Bild zu erstellen.⊠| 16 comments on LinkedIn
Wer einen Blick in die Kristallkugel bzgl. KI Agenten wagen möchte - seit⊠| Maks Giordano
Wer einen Blick in die Kristallkugel bzgl. KI Agenten wagen möchte -
seit wenigen Tagen geistert Manus AI durch meinen Feed. Warte noch sehnsÃŒchtig auf den Access, aber was man bereits sehen kann in diversen Demos macht richtig Lust drauf: General AI Agent als quasi Mischung aus Claude Computer Use, Chat GPT Operator, Deep Research etc und das ganze extrem intelligent miteinander verknÃŒpft.
"Manus" als die KI "Hand", die einem tatkrÀftig im digitalen Alltag hilft. ðª
Thought is a multi-step process, but rarely linear. Early LLMs lacked⊠| Ross Dawson
Thought is a multi-step process, but rarely linear. Early LLMs lacked structured reasoning and often struggled with logic. Chain-of-Thought introducedâŠ
KI Sprachtechnologien bei der Deutschen Bahn - DB Lingua macht den Anfang
ð Erfahrt in der neuen AI 4 L&D Podcastfolge, wie DB Lingua die Kommunikation und Effizienz zwischen Fahrdienstleitern und TriebfahrzeugfÃŒhrern verbessert u...
2025 is the Year of LCMs and not LLMs. Meta has announced a new⊠| Manthan Patel
2025 is the Year of LCMs and not LLMs.
Â
Meta has announced a new architecture for the future of Large Language Models called Large Concept Models.
Â
Building⊠| 103 comments on LinkedIn
Felix Schlenther auf LinkedIn: 17x interne KI Chatbots / CompanyGPTs eingefÃŒhrt. Diese 11 Lektionen habeâŠ
17x interne KI Chatbots / CompanyGPTs eingefÃŒhrt.
Diese 11 Lektionen habe ich gelernt:
ðð®ð "ðªð®ð¿ððº" ðð®Ìðµð¹ð.
Was ist das Ziel der KI-Initiative?⊠| 54 Kommentare auf LinkedIn