AI News

AI News

634 bookmarks
Custom sorting
Distinguishing performance gains from learning when using generative AI - published in Nature Reviews Psychology!
Distinguishing performance gains from learning when using generative AI - published in Nature Reviews Psychology!
Excited to share our latest commentary just published in Nature Reviews Psychology! โœจ ""ย  ย  Generative AI tools such as ChatGPT are reshaping education, promising improvements in learner performance and reduced cognitive load. ๐Ÿค– ๐Ÿค”But here's the catch: Do these immediate gains translate into deep and lasting learning? Reflecting on recent viral systematic reviews and meta-analyses on #ChatGPT and #Learning, we argue that educators and researchers need to clearly differentiate short-term performance benefits from genuine, durable learning outcomes. ๐Ÿ’ก ๐Ÿ“Œ Key takeaways: โœ… Immediate boosts with generative AI tools don't necessarily equal durable learning โœ… While generative AI can ease cognitive load, excessive reliance might negatively impact critical thinking, metacognition, and learner autonomy โœ… Long-term, meaningful skill development demands going beyond immediate performance metrics ๐Ÿ”– Recommendations for future research and practice: 1๏ธโƒฃ Shift toward assessing retention, transfer, and deep cognitive processing 2๏ธโƒฃ Promote active learner engagement, critical evaluation, and metacognitive reflection 3๏ธโƒฃ Implement longitudinal studies exploring the relationship between generative AI assistance and prior learner knowledge Special thanks ๐Ÿ™ to my amazing collaborators and mentors, Samuel Greiff, Jason M. Lodge, and Dragan Gasevic, for their invaluable contributions, guidance, and encouragement. A big shout-out to Dr. Teresa Schubert for her insightful comments and wonderful support throughout the editorial process! ๐ŸŒŸ ๐Ÿ‘‰ Full article here: https://lnkd.in/g3YDQUrH ๐Ÿ‘‰ Full-text Access (view-only version): https://rdcu.be/erwIt #GenerativeAI #ChatGPT #AIinEducation #LearningScience #Metacognition #Cognition #EdTech #EducationalResearch #BJETspecialIssue #NatureReviewsPsychology #FutureOfEducation #OpenScience
ยทlinkedin.comยท
Distinguishing performance gains from learning when using generative AI - published in Nature Reviews Psychology!
In a now viral study, researchers examined how using ChatGPT for essay writing affects our brains and cognitive abilities.
In a now viral study, researchers examined how using ChatGPT for essay writing affects our brains and cognitive abilities.
In a now viral study, researchers examined how using ChatGPT for essay writing affects our brains and cognitive abilities. They divided participants into three groups: one using ChatGPT, one using search engines, and one using just their brains. Through EEG monitoring, interviews, and analysis of the essays, they discovered some not surprising results about how AI use impacts learning and cognitive engagement. There were five key takeaways for me (although this is not an exhaustive list), within the context of this particular study: 1. The Cognitive Debt Issue The study indicates that participants who used ChatGPT exhibited the weakest neural connectivity patterns when compared to those relying on search engines or unaided cognition. This suggests that defaulting to generative AI may function as an intellectual shortcut, diminishing rather than strengthening cognitive engagement. Researchers are increasingly describing the tradeoff between short-term ease and productivity and long-term erosion of independent thinking and critical skills as โ€œcognitive debt.โ€ This parallels the concept of technical debt, when developers prioritise quick solutions over robust design, leading to hidden costs, inefficiencies, and increased complexity downstream. 2. The Memory Problem Strikingly, users of ChatGPT had difficulty recalling or quoting from essays they had composed only minutes earlier. This undermines the notion of augmentation; rather than supporting cognitive function, the tool appears to offload essential processes, impairing retention and deep processing of information. 3. The Ownership Gap Participants who used ChatGPT reported a reduced sense of ownership over their work. If we normalise over-reliance on AI tools, we risk cultivating passive knowledge consumers rather than active knowledge creators. 4. The Homogenisation Effect Analysis showed that essays from the LLM group were highly uniform, with repeated phrases and limited variation, suggesting reduced cognitive and expressive diversity. In contrast, the Brain-only group produced more varied and original responses. The Search group fell in between. 5. The Potential for Constructive Re-engagement ๐Ÿง  ๐Ÿค– ๐Ÿค– ๐Ÿค– There is, however, promising evidence for meaningful integration of AI when used in conjunction with prior unaided effort: โ€œThose who had previously written without tools (Brain-only group), the so-called Brain-to-LLM group, exhibited significant increase in brain connectivity across all EEG frequency bands when allowed to use an LLM on a familiar topic. This suggests that AI-supported re-engagement invoked high levels of cognitive integration, memory reactivation, and top-down control.โ€ This points to the potential for AI to enhance cognitive function when it is used as a complement to, rather than a substitute for, initial human effort. At over 200 pages, expect multiple paper submissions out of this extensive body of work. https://lnkd.in/gzicDHp2 | 16 comments on LinkedIn
ยทlinkedin.comยท
In a now viral study, researchers examined how using ChatGPT for essay writing affects our brains and cognitive abilities.
๐๐จ, ๐ฒ๐จ๐ฎ๐ซ ๐›๐ซ๐š๐ข๐ง ๐๐จ๐ž๐ฌ ๐ง๐จ๐ญ ๐ฉ๐ž๐ซ๐Ÿ๐จ๐ซ๐ฆ ๐›๐ž๐ญ๐ญ๐ž๐ซ ๐š๐Ÿ๐ญ๐ž๐ซ ๐‹๐‹๐Œ ๐จ๐ซ ๐๐ฎ๐ซ๐ข๐ง๐  ๐‹๐‹๐Œ ๐ฎ๐ฌ๐ž. | Nataliya Kosmyna, Ph.D
๐๐จ, ๐ฒ๐จ๐ฎ๐ซ ๐›๐ซ๐š๐ข๐ง ๐๐จ๐ž๐ฌ ๐ง๐จ๐ญ ๐ฉ๐ž๐ซ๐Ÿ๐จ๐ซ๐ฆ ๐›๐ž๐ญ๐ญ๐ž๐ซ ๐š๐Ÿ๐ญ๐ž๐ซ ๐‹๐‹๐Œ ๐จ๐ซ ๐๐ฎ๐ซ๐ข๐ง๐  ๐‹๐‹๐Œ ๐ฎ๐ฌ๐ž. | Nataliya Kosmyna, Ph.D
๐๐จ, ๐ฒ๐จ๐ฎ๐ซ ๐›๐ซ๐š๐ข๐ง ๐๐จ๐ž๐ฌ ๐ง๐จ๐ญ ๐ฉ๐ž๐ซ๐Ÿ๐จ๐ซ๐ฆ ๐›๐ž๐ญ๐ญ๐ž๐ซ ๐š๐Ÿ๐ญ๐ž๐ซ ๐‹๐‹๐Œ ๐จ๐ซ ๐๐ฎ๐ซ๐ข๐ง๐  ๐‹๐‹๐Œ ๐ฎ๐ฌ๐ž. See our paper for more results:ย "Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task" (link in the comments). For 4 months, 54 students were divided into three groups: ChatGPT, Google -ai, and Brain-only. Across 3 sessions, each wrote essays on SAT prompts. In an optional 4th session, participants switched: LLM users used no tools (LLM-to-Brain), and Brain-only group used ChatGPT (Brain-to-LLM). ๐Ÿ‘‡ ๐ˆ. ๐๐‹๐ ๐š๐ง๐ ๐„๐ฌ๐ฌ๐š๐ฒ ๐‚๐จ๐ง๐ญ๐ž๐ง๐ญ - LLM Group: Essays were highly homogeneous within each topic, showing little variation. Participants often relied on the same expressions or ideas. - Brain-only Group: Diverse and varied approaches across participants and topics. - Search Engine Group: Essays were shaped by search engine-optimized content; their ontology overlapped with the LLM group but not with the Brain-only group. ๐ˆ๐ˆ. ๐„๐ฌ๐ฌ๐š๐ฒ ๐’๐œ๐จ๐ซ๐ข๐ง๐  (๐“๐ž๐š๐œ๐ก๐ž๐ซ๐ฌ ๐ฏ๐ฌ. ๐€๐ˆ ๐‰๐ฎ๐๐ ๐ž) - Teachersย detected patterns typical of AI-generated content and scoring LLM essays lower for originality and structure. - AI Judgeย gave consistently higher scores to LLM essays, missing human-recognized stylistic traits. ๐ˆ๐ˆ๐ˆ: ๐„๐„๐† ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ Connectivity: Brain-only group showed the highest neural connectivity, especially in alpha, theta, and delta bands. LLM users had the weakest connectivity, up to 55% lower in low-frequency networks. Search Engine group showed high visual cortex engagement, aligned with web-based information gathering. ๐‘บ๐’†๐’”๐’”๐’Š๐’๐’ 4 ๐‘น๐’†๐’”๐’–๐’๐’•๐’”: - LLM-to-Brain (๐Ÿค–๐Ÿค–๐Ÿค–๐Ÿง ) participantsย underperformed cognitively with reduced alpha/beta activity and poor content recall. - Brain-to-LLM (๐Ÿง ๐Ÿง ๐Ÿง ๐Ÿค–) participantsย showed strong re-engagement, better memory recall, and efficient tool use. LLM-to-Brain participants had potential limitations in achieving robust neural synchronization essential for complex cognitive tasks. Results forย Brain-to-LLM participantsย suggest that strategic timing of AI tool introduction following initial self-driven effort may enhance engagement and neural integration. ๐ˆ๐•. ๐๐ž๐ก๐š๐ฏ๐ข๐จ๐ซ๐š๐ฅ ๐š๐ง๐ ๐‚๐จ๐ ๐ง๐ข๐ญ๐ข๐ฏ๐ž ๐„๐ง๐ ๐š๐ ๐ž๐ฆ๐ž๐ง๐ญ - Quoting Ability: LLM users failed to quote accurately, while Brain-only participants showed robust recall and quoting skills. - Ownership: Brain-only group claimed full ownership of their work; LLM users expressed either no ownership or partial ownership. - Critical Thinking: Brain-only participants cared more aboutย ๐˜ธ๐˜ฉ๐˜ข๐˜ตย andย ๐˜ธ๐˜ฉ๐˜บย they wrote; LLM users focused onย ๐˜ฉ๐˜ฐ๐˜ธ. - Cognitive Debt: Repeated LLM use led to shallow content repetition and reduced critical engagement. This suggests a buildup of "cognitive debt", deferring mental effort at the cost of long-term cognitive depth. Support and share! โค๏ธ #MIT #AI #Brain #Neuroscience #CognitiveDebt | 54 comments on LinkedIn
ยทlinkedin.comยท
๐๐จ, ๐ฒ๐จ๐ฎ๐ซ ๐›๐ซ๐š๐ข๐ง ๐๐จ๐ž๐ฌ ๐ง๐จ๐ญ ๐ฉ๐ž๐ซ๐Ÿ๐จ๐ซ๐ฆ ๐›๐ž๐ญ๐ญ๐ž๐ซ ๐š๐Ÿ๐ญ๐ž๐ซ ๐‹๐‹๐Œ ๐จ๐ซ ๐๐ฎ๐ซ๐ข๐ง๐  ๐‹๐‹๐Œ ๐ฎ๐ฌ๐ž. | Nataliya Kosmyna, Ph.D
Du kannst jetzt das passende Modell fรผr deinen CustomGPT auswรคhlen.
Du kannst jetzt das passende Modell fรผr deinen CustomGPT auswรคhlen.
Na endlich! Du kannst jetzt das passende Modell fรผr deinen CustomGPT auswรคhlen. CustomGPTs sind fรผr mich das beste Feature in ChatGPT und wurden in den letzten 12 Monaten stark vernachlรคssigt. Mit der Modell-Auswahl kommt jetzt das erste gute Upgrade. Mini-Guide zur Modell-Auswahl: o3 -> Komplexe Problemstellungen und Datenanalyse 4.5 -> Kreative Aufgaben und Copywriting 4o -> Bild-Verarbeitung 4.1 -> Coding Alle anderen Modelle benรถtigt man mMn nicht. Mein Strategieberater bekommt zum Beispiel o3 hinterlegt (bessere Planungsfรคhigkeit in komplexen Aufgaben), wohingegen der Hook Writer GPT4.5 bekommt (besserer Schreibstil). Wenn du die CustomGPTs selbst nutzen willst: 80+ Vorlagen frei verfรผgbar in unserer Assistenten-Datenbank ๐Ÿ‘‡ P.S. Wie findest du das Update? | 15 Kommentare auf LinkedIn
ยทlinkedin.comยท
Du kannst jetzt das passende Modell fรผr deinen CustomGPT auswรคhlen.
99% ๐—ผ๐—ณ ๐—ฝ๐—ฒ๐—ผ๐—ฝ๐—น๐—ฒ ๐—ด๐—ฒ๐˜ ๐˜๐—ต๐—ถ๐˜€ ๐˜„๐—ฟ๐—ผ๐—ป๐—ด: ๐—ง๐—ต๐—ฒ๐˜† ๐˜‚๐˜€๐—ฒ ๐˜๐—ต๐—ฒ ๐˜๐—ฒ๐—ฟ๐—บ๐˜€ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ฒ๐—ฎ๐—ฏ๐—น๐˜† โ€” ๐—ฏ๐˜‚๐˜ ๐˜๐—ต๐—ฒ๐˜† ๐—ฑ๐—ฒ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐˜๐˜„๐—ผ ๐—ณ๐˜‚๐—ป๐—ฑ๐—ฎ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น๐—น๐˜† ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐˜ ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€!
99% ๐—ผ๐—ณ ๐—ฝ๐—ฒ๐—ผ๐—ฝ๐—น๐—ฒ ๐—ด๐—ฒ๐˜ ๐˜๐—ต๐—ถ๐˜€ ๐˜„๐—ฟ๐—ผ๐—ป๐—ด: ๐—ง๐—ต๐—ฒ๐˜† ๐˜‚๐˜€๐—ฒ ๐˜๐—ต๐—ฒ ๐˜๐—ฒ๐—ฟ๐—บ๐˜€ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ฒ๐—ฎ๐—ฏ๐—น๐˜† โ€” ๐—ฏ๐˜‚๐˜ ๐˜๐—ต๐—ฒ๐˜† ๐—ฑ๐—ฒ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐˜๐˜„๐—ผ ๐—ณ๐˜‚๐—ป๐—ฑ๐—ฎ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น๐—น๐˜† ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐˜ ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€!
99% ๐—ผ๐—ณ ๐—ฝ๐—ฒ๐—ผ๐—ฝ๐—น๐—ฒ ๐—ด๐—ฒ๐˜ ๐˜๐—ต๐—ถ๐˜€ ๐˜„๐—ฟ๐—ผ๐—ป๐—ด: ๐—ง๐—ต๐—ฒ๐˜† ๐˜‚๐˜€๐—ฒ ๐˜๐—ต๐—ฒ ๐˜๐—ฒ๐—ฟ๐—บ๐˜€ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ฒ๐—ฎ๐—ฏ๐—น๐˜† โ€” ๐—ฏ๐˜‚๐˜ ๐˜๐—ต๐—ฒ๐˜† ๐—ฑ๐—ฒ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐˜๐˜„๐—ผ ๐—ณ๐˜‚๐—ป๐—ฑ๐—ฎ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น๐—น๐˜† ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐˜ ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€! โฌ‡๏ธ Letโ€™s clarify it once and for all: โฌ‡๏ธ 1. ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: ๐—ง๐—ผ๐—ผ๐—น๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐—”๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐˜†, ๐—ช๐—ถ๐˜๐—ต๐—ถ๐—ป ๐—Ÿ๐—ถ๐—บ๐—ถ๐˜๐˜€ โžœ AI agents are modular, goal-directed systems that operate within clearly defined boundaries. Theyโ€™re built to: * Use tools (APIs, browsers, databases) * Execute specific, task-oriented workflows * React to prompts or real-time inputs * Plan short sequences and return actionable outputs ๐˜›๐˜ฉ๐˜ฆ๐˜บโ€™๐˜ณ๐˜ฆ ๐˜ฆ๐˜น๐˜ค๐˜ฆ๐˜ญ๐˜ญ๐˜ฆ๐˜ฏ๐˜ต ๐˜ง๐˜ฐ๐˜ณ ๐˜ต๐˜ข๐˜ณ๐˜จ๐˜ฆ๐˜ต๐˜ฆ๐˜ฅ ๐˜ข๐˜ถ๐˜ต๐˜ฐ๐˜ฎ๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ, ๐˜ญ๐˜ช๐˜ฌ๐˜ฆ: ๐˜Š๐˜ถ๐˜ด๐˜ต๐˜ฐ๐˜ฎ๐˜ฆ๐˜ณ ๐˜ด๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ณ๐˜ต ๐˜ฃ๐˜ฐ๐˜ต๐˜ด, ๐˜๐˜ฏ๐˜ต๐˜ฆ๐˜ณ๐˜ฏ๐˜ข๐˜ญ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ด๐˜ฆ๐˜ข๐˜ณ๐˜ค๐˜ฉ, ๐˜Œ๐˜ฎ๐˜ข๐˜ช๐˜ญ ๐˜ต๐˜ณ๐˜ช๐˜ข๐˜จ๐˜ฆ, ๐˜”๐˜ฆ๐˜ฆ๐˜ต๐˜ช๐˜ฏ๐˜จ ๐˜ด๐˜ค๐˜ฉ๐˜ฆ๐˜ฅ๐˜ถ๐˜ญ๐˜ช๐˜ฏ๐˜จ, ๐˜Š๐˜ฐ๐˜ฅ๐˜ฆ ๐˜ด๐˜ถ๐˜จ๐˜จ๐˜ฆ๐˜ด๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด But even the most advanced are limited by scope. They donโ€™t initiate. They donโ€™t collaborate. They execute what we ask! 2. ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ: ๐—” ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ผ๐—ณ ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€ โžœ Agentic AI is an architectural leap. Itโ€™s not just one smarter agent โ€” itโ€™s multiple specialized agents working together toward shared goals. These systems exhibit: * Multi-agent collaboration * Goal decomposition and role assignment * Inter-agent communication via memory or messaging * Persistent context across time and tasks * Recursive planning and error recovery * Distributed orchestration and adaptive feedback Agentic AI systems donโ€™t just follow instructions. They coordinate. They adapt. They manage complexity. ๐˜Œ๐˜น๐˜ข๐˜ฎ๐˜ฑ๐˜ญ๐˜ฆ๐˜ด ๐˜ช๐˜ฏ๐˜ค๐˜ญ๐˜ถ๐˜ฅ๐˜ฆ: ๐˜ณ๐˜ฆ๐˜ด๐˜ฆ๐˜ข๐˜ณ๐˜ค๐˜ฉ ๐˜ต๐˜ฆ๐˜ข๐˜ฎ๐˜ด ๐˜ฑ๐˜ฐ๐˜ธ๐˜ฆ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ฃ๐˜บ ๐˜ข๐˜จ๐˜ฆ๐˜ฏ๐˜ต๐˜ด, ๐˜ด๐˜ฎ๐˜ข๐˜ณ๐˜ต ๐˜ฉ๐˜ฐ๐˜ฎ๐˜ฆ ๐˜ฆ๐˜ค๐˜ฐ๐˜ด๐˜บ๐˜ด๐˜ต๐˜ฆ๐˜ฎ๐˜ด ๐˜ฐ๐˜ฑ๐˜ต๐˜ช๐˜ฎ๐˜ช๐˜ป๐˜ช๐˜ฏ๐˜จ ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ณ๐˜จ๐˜บ/๐˜ด๐˜ฆ๐˜ค๐˜ถ๐˜ณ๐˜ช๐˜ต๐˜บ, ๐˜ด๐˜ธ๐˜ข๐˜ณ๐˜ฎ๐˜ด ๐˜ฐ๐˜ง ๐˜ณ๐˜ฐ๐˜ฃ๐˜ฐ๐˜ต๐˜ด ๐˜ช๐˜ฏ ๐˜ญ๐˜ฐ๐˜จ๐˜ช๐˜ด๐˜ต๐˜ช๐˜ค๐˜ด ๐˜ฐ๐˜ณ ๐˜ข๐˜จ๐˜ณ๐˜ช๐˜ค๐˜ถ๐˜ญ๐˜ต๐˜ถ๐˜ณ๐˜ฆ ๐˜ฎ๐˜ข๐˜ฏ๐˜ข๐˜จ๐˜ช๐˜ฏ๐˜จ ๐˜ณ๐˜ฆ๐˜ข๐˜ญ-๐˜ต๐˜ช๐˜ฎ๐˜ฆ ๐˜ถ๐˜ฏ๐˜ค๐˜ฆ๐˜ณ๐˜ต๐˜ข๐˜ช๐˜ฏ๐˜ต๐˜บ ๐—ง๐—ต๐—ฒ ๐—–๐—ผ๐—ฟ๐—ฒ ๐——๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ? AI Agents = autonomous tools for single-task execution Agentic AI = orchestrated ecosystems for workflow-level intelligence ๐—ก๐—ผ๐˜„ ๐—น๐—ผ๐—ผ๐—ธ ๐—ฎ๐˜ ๐˜๐—ต๐—ฒ ๐—ฝ๐—ถ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ: โฌ‡๏ธ ๐—ข๐—ป ๐˜๐—ต๐—ฒ ๐—น๐—ฒ๐—ณ๐˜: a smart thermostat, which can be an AI Agent. It keeps your room at 21ยฐC. Maybe it learns your schedule. But itโ€™s working alone. ๐—ข๐—ป ๐˜๐—ต๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜: Agentic AI. A full smart home ecosystem โ€” weather-aware, energy-optimized, schedule-sensitive. Agents talk to each other. They share data. They make coordinated decisions to optimize your comfort, cost, and security in real time. Thatโ€™s the shift = From pure task automation to goal-driven orchestration. From single-agent logic to collaborative intelligence. This is whatโ€™s coming = This is Agentic AI. And if we confuse โ€œagentโ€ with โ€œagentic,โ€ we risk underbuilding for what AI is truly capable of. The Cornell University paper in the comments on this topic is excellent! โฌ‡๏ธ | 186 comments on LinkedIn
ยทlinkedin.comยท
99% ๐—ผ๐—ณ ๐—ฝ๐—ฒ๐—ผ๐—ฝ๐—น๐—ฒ ๐—ด๐—ฒ๐˜ ๐˜๐—ต๐—ถ๐˜€ ๐˜„๐—ฟ๐—ผ๐—ป๐—ด: ๐—ง๐—ต๐—ฒ๐˜† ๐˜‚๐˜€๐—ฒ ๐˜๐—ต๐—ฒ ๐˜๐—ฒ๐—ฟ๐—บ๐˜€ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ฒ๐—ฎ๐—ฏ๐—น๐˜† โ€” ๐—ฏ๐˜‚๐˜ ๐˜๐—ต๐—ฒ๐˜† ๐—ฑ๐—ฒ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐˜๐˜„๐—ผ ๐—ณ๐˜‚๐—ป๐—ฑ๐—ฎ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น๐—น๐˜† ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐˜ ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€!
AI Adoption Matrix
AI Adoption Matrix
In fact, after guiding many organisations on this journey over the past few years, I've noticed two consistent drivers of AI adoption: โ€ข A culture that encourages experimentation โ€ข A strategic mandate from leadership that unlocks time, resources, and the infrastructure needed to make AI work at scale Without both, even the most powerful tools are used at a fraction of their potential, leaving the promise of AI unrealised and considerable investments wasted. โžก๏ธ If you have a conservative organisational culture, one that disincentivises taking risks and change, and there's no clear mandate to use AI, you'll have ๐—ถ๐—ฑ๐—น๐—ฒ ๐—ฝ๐—ผ๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ฎ๐—น. Try as you might, AI training will hardly translate into people using AI in their work. The knowledge might be there but the impact isn't. โžก๏ธ If you have an innovation culture, one where experimentation is encouraged, but where people are unsure if they're allowed to use AI, you'll have ๐—ฐ๐—ฎ๐˜€๐˜‚๐—ฎ๐—น ๐—ฒ๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—บ๐—ฒ๐—ป๐˜๐˜€ - some people tinkering on their own, finding useful use cases and workarounds, but with no way to accumulate, build on, and spread this knowledge. That's where a lot of organisations find themselves in 2025 - the majority of employees are using AI in some form, yet their efforts are siloed and scattered. โžก๏ธ If you have both an innovation culture *and* and an active mandate, you're ๐—ฝ๐—ถ๐—ผ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—ถ๐—ป๐—ป๐—ผ๐˜ƒ๐—ฎ๐˜๐—ถ๐—ผ๐—ป and there are few companies still at your level. That's an exciting place to be! That's also where a lot of organisations imagine they would get to as soon as they teach people to use AI, often without first doing the culture and mandate work. โžก๏ธ If your organisation encourages the use of AI but your conservative culture keeps hitting the brakes, you'll likely end up with ๐—ฟ๐—ฒ๐—น๐˜‚๐—ฐ๐˜๐—ฎ๐—ป๐˜ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—น๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ. That's also where a considerable number of organisations are right now: driven by expectations of benefits from AI adoption but burdened by processes that are incompatible with grassroots innovation. There is a difference between individual and organisational AI adoption. Organisational adoption is frustratingly complex โ€” it requires coordination across departments and leaders, alignment with business priorities, and systems that enable change, not just enthusiasm. Curiosity gets people started. Supportive systems turn momentum into scale. Nodes #GenAI #AIAdoption #FutureOfWork #Talent
ยทlinkedin.comยท
AI Adoption Matrix
For the longest time we've had two main options to help people perform: upskilling or performance support. Just-in-case vs just-in-time. Push vs pull. With AI, we now have a third - enablement.
For the longest time we've had two main options to help people perform: upskilling or performance support. Just-in-case vs just-in-time. Push vs pull. With AI, we now have a third - enablement.
It's different from what we've had before: ๐”๐ฉ๐ฌ๐ค๐ข๐ฅ๐ฅ๐ข๐ง๐  ("teach me") - commonly done through hands-on learning with feedback and reflection, such as scenario simulations, in-person role-plays, facilitated discussions, building and problem-solving. None of that has become less relevant, but AI has enabled scale through AI-enabled role-plays, coaching, and other avenues for personalised feedback. ๐๐ž๐ซ๐Ÿ๐จ๐ซ๐ฆ๐š๐ง๐œ๐ž ๐ฌ๐ฎ๐ฉ๐ฉ๐จ๐ซ๐ญ ("help me") - support in the flow of work, previously often in the format of short how-to resources located in convenient places. AI has elevated that in at least two ways: through knowledge management, which helps retrieve the necessary, contextualised information in the workflow; and general & specialised copilots that enhance the speed and, arguably, the expertise of the employee. Yet, ๐ž๐ง๐š๐›๐ฅ๐ž๐ฆ๐ž๐ง๐ญ (โ€˜do it for meโ€™) is different โ€“ it takes the task off your plate entirely. Weโ€™ve seen hints of it with automations, but the text and analysis capabilities of genAI mean that increasingly 'skilled' tasks are now up for grabs. Case in point: where written communication was once a skill to be learned, email and report writing are now increasingly being handed off to AI. No skill required (for better or worse) โ€“ AI does it for you. But here's a plot twist: a lot of that enablement happens outside of L&D tech. It may happen in sales or design software, or even your general-purpose enterprise AI. All of which points to a bigger shift: roles, tasks, and ways of working are changing โ€“ and L&D must tune into how work is being reimagined to adapt alongside it. Nodes #GenAI #Learning #Talent #FutureOfWork #AIAdoption | 13 comments on LinkedIn
ยทlinkedin.comยท
For the longest time we've had two main options to help people perform: upskilling or performance support. Just-in-case vs just-in-time. Push vs pull. With AI, we now have a third - enablement.
The Alan Turing Institute ๐—ฎ๐—ป๐—ฑ the LEGO Group ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐—ฝ๐—ฒ๐—ฑ ๐˜๐—ต๐—ฒ ๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฐ๐—ต๐—ถ๐—น๐—ฑ-๐—ฐ๐—ฒ๐—ป๐˜๐—ฟ๐—ถ๐—ฐ ๐—”๐—œ ๐˜€๐˜๐˜‚๐—ฑ๐˜†! โฌ‡๏ธ
The Alan Turing Institute ๐—ฎ๐—ป๐—ฑ the LEGO Group ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐—ฝ๐—ฒ๐—ฑ ๐˜๐—ต๐—ฒ ๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฐ๐—ต๐—ถ๐—น๐—ฑ-๐—ฐ๐—ฒ๐—ป๐˜๐—ฟ๐—ถ๐—ฐ ๐—”๐—œ ๐˜€๐˜๐˜‚๐—ฑ๐˜†! โฌ‡๏ธ
(๐˜ˆ ๐˜ฎ๐˜ถ๐˜ด๐˜ต-๐˜ณ๐˜ฆ๐˜ข๐˜ฅ โ€” ๐˜ฆ๐˜ด๐˜ฑ๐˜ฆ๐˜ค๐˜ช๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ช๐˜ง ๐˜บ๐˜ฐ๐˜ถ ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ค๐˜ฉ๐˜ช๐˜ญ๐˜ฅ๐˜ณ๐˜ฆ๐˜ฏ.) While most AI debates and studies focus on models, chips, and jobs โ€” this one zooms in on something far more personal: ๐—ช๐—ต๐—ฎ๐˜ ๐—ต๐—ฎ๐—ฝ๐—ฝ๐—ฒ๐—ป๐˜€ ๐˜„๐—ต๐—ฒ๐—ป ๐—ฐ๐—ต๐—ถ๐—น๐—ฑ๐—ฟ๐—ฒ๐—ป ๐—ด๐—ฟ๐—ผ๐˜„ ๐˜‚๐—ฝ ๐˜„๐—ถ๐˜๐—ต ๐—ด๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ? They surveyed 1,700+ kids, parents, and teachers across the UK โ€” and what they found is both powerful and concerning. ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ 9 ๐˜๐—ต๐—ถ๐—ป๐—ด๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐˜€๐˜๐—ผ๐—ผ๐—ฑ ๐—ผ๐˜‚๐˜ ๐˜๐—ผ ๐—บ๐—ฒ ๐—ณ๐—ฟ๐—ผ๐—บ ๐˜๐—ต๐—ฒ ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜: โฌ‡๏ธ 1. 1 ๐—ถ๐—ป 4 ๐—ธ๐—ถ๐—ฑ๐˜€ (8โ€“12 ๐˜†๐—ฟ๐˜€) ๐—ฎ๐—น๐—ฟ๐—ฒ๐—ฎ๐—ฑ๐˜† ๐˜‚๐˜€๐—ฒ ๐—š๐—ฒ๐—ป๐—”๐—œ โ€” ๐—บ๐—ผ๐˜€๐˜ ๐˜„๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐˜€๐—ฎ๐—ณ๐—ฒ๐—ด๐˜‚๐—ฎ๐—ฟ๐—ฑ๐˜€ โ†’ ChatGPT, Gemini, and even MyAI on Snapchat are now part of daily digital play. 2. ๐—”๐—œ ๐—ถ๐˜€ ๐—ต๐—ฒ๐—น๐—ฝ๐—ถ๐—ป๐—ด ๐—ธ๐—ถ๐—ฑ๐˜€ ๐—ฒ๐˜…๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€ ๐˜๐—ต๐—ฒ๐—บ๐˜€๐—ฒ๐—น๐˜ƒ๐—ฒ๐˜€ โ€” ๐—ฒ๐˜€๐—ฝ๐—ฒ๐—ฐ๐—ถ๐—ฎ๐—น๐—น๐˜† ๐˜๐—ต๐—ผ๐˜€๐—ฒ ๐˜„๐—ถ๐˜๐—ต ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ป๐—ฒ๐—ฒ๐—ฑ๐˜€ โ†’ 78% of neurodiverse kids use ChatGPT to communicate ideas they struggle to express otherwise. 3. ๐—–๐—ฟ๐—ฒ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ถ๐˜๐˜† ๐—ถ๐˜€ ๐˜€๐—ต๐—ถ๐—ณ๐˜๐—ถ๐—ป๐—ด โ€” ๐—ฏ๐˜‚๐˜ ๐—ป๐—ผ๐˜ ๐—ฟ๐—ฒ๐—ฝ๐—น๐—ฎ๐—ฐ๐—ถ๐—ป๐—ด โ†’ Kids still prefer offline tools (arts, crafts, games), even when they enjoy AI-assisted play. Digital is not (yet) the default. 4. ๐—”๐—œ ๐—ฎ๐—ฐ๐—ฐ๐—ฒ๐˜€๐˜€ ๐—ถ๐˜€ ๐—ต๐—ถ๐—ด๐—ต๐—น๐˜† ๐˜‚๐—ป๐—ฒ๐—พ๐˜‚๐—ฎ๐—น โ†’ 52% of private school students use GenAI, compared to only 18% in public schools. The next digital divide is already here. 5. ๐—–๐—ต๐—ถ๐—น๐—ฑ๐—ฟ๐—ฒ๐—ป ๐—ฎ๐—ฟ๐—ฒ ๐˜„๐—ผ๐—ฟ๐—ฟ๐—ถ๐—ฒ๐—ฑ ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐—”๐—œโ€™๐˜€ ๐—ฒ๐—ป๐˜ƒ๐—ถ๐—ฟ๐—ผ๐—ป๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น ๐—ถ๐—บ๐—ฝ๐—ฎ๐—ฐ๐˜ โ†’ Some kids refused to use GenAI after learning about water and energy costs. Let that sink in. 6. ๐—ฃ๐—ฎ๐—ฟ๐—ฒ๐—ป๐˜๐˜€ ๐—ฎ๐—ฟ๐—ฒ ๐—ผ๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜€๐˜๐—ถ๐—ฐ โ€” ๐—ฏ๐˜‚๐˜ ๐—ฑ๐—ฒ๐—ฒ๐—ฝ๐—น๐˜† ๐˜„๐—ผ๐—ฟ๐—ฟ๐—ถ๐—ฒ๐—ฑ โ†’ 76% support AI use, but 82% are scared of inappropriate content and misinformation. Only 41% fear cheating. 7. ๐—ง๐—ฒ๐—ฎ๐—ฐ๐—ต๐—ฒ๐—ฟ๐˜€ ๐—ฎ๐—ฟ๐—ฒ ๐˜‚๐˜€๐—ถ๐—ป๐—ด ๐—”๐—œ โ€” ๐—ฎ๐—ป๐—ฑ ๐—น๐—ผ๐˜ƒ๐—ถ๐—ป๐—ด ๐—ถ๐˜ โ†’ 85% say GenAI boosts their productivity, 88% feel confident using it. Theyโ€™re ahead of the curve. 8. ๐—–๐—ฟ๐—ถ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐˜๐—ต๐—ถ๐—ป๐—ธ๐—ถ๐—ป๐—ด ๐—ถ๐˜€ ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ ๐˜๐—ต๐—ฟ๐—ฒ๐—ฎ๐˜ โ†’ 76% of parents and 72% of teachers fear kids are becoming too trusting of GenAI outputs. 9. ๐—•๐—ถ๐—ฎ๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—ถ๐—ฑ๐—ฒ๐—ป๐˜๐—ถ๐˜๐˜† ๐—ฟ๐—ฒ๐—ฝ๐—ฟ๐—ฒ๐˜€๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ถ๐˜€ ๐˜€๐˜๐—ถ๐—น๐—น ๐—ฎ ๐—ฏ๐—น๐—ถ๐—ป๐—ฑ๐˜€๐—ฝ๐—ผ๐˜ โ†’ Children of color felt less seen and less motivated to use tools that didnโ€™t reflect them. Representation matters. The next generation isnโ€™t just using AI. Theyโ€™re being shaped by it. Thatโ€™s why we need a more focused, intentional approach: Teaching them not just how to use these tools โ€” but how to question them. To navigate the benefits, the risks, and the blindspots. ๐—ช๐—ฎ๐—ป๐˜ ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—ฏ๐—ฟ๐—ฒ๐—ฎ๐—ธ๐—ฑ๐—ผ๐˜„๐—ป๐˜€ ๐—น๐—ถ๐—ธ๐—ฒ ๐˜๐—ต๐—ถ๐˜€? Subscribe to Human in the Loop โ€” my new weekly deep dive on AI agents, real-world tools, and strategic insights: https://lnkd.in/dbf74Y9E | 174 comments on LinkedIn
ยทlinkedin.comยท
The Alan Turing Institute ๐—ฎ๐—ป๐—ฑ the LEGO Group ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐—ฝ๐—ฒ๐—ฑ ๐˜๐—ต๐—ฒ ๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฐ๐—ต๐—ถ๐—น๐—ฑ-๐—ฐ๐—ฒ๐—ป๐˜๐—ฟ๐—ถ๐—ฐ ๐—”๐—œ ๐˜€๐˜๐˜‚๐—ฑ๐˜†! โฌ‡๏ธ
Understanding LLMs, RAG, AI Agents, and Agentic AI
Understanding LLMs, RAG, AI Agents, and Agentic AI
I frequently see conversations where terms like LLMs, RAG, AI Agents, and Agentic AI are used interchangeably, even though they represent fundamentally different layers of capability. This visual guides explain how these four layers relateโ€”not as competing technologies, but as an evolving intelligence architecture. Hereโ€™s a deeper look: 1. ๐—Ÿ๐—Ÿ๐—  (๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น) This is the foundation. Models like GPT, Claude, and Gemini are trained on vast corpora of text to perform a wide array of tasks: โ€“ Text generation โ€“ Instruction following โ€“ Chain-of-thought reasoning โ€“ Few-shot/zero-shot learning โ€“ Embedding and token generation However, LLMs are inherently limited to the knowledge encoded during training and struggle with grounding, real-time updates, or long-term memory. 2. ๐—ฅ๐—”๐—š (๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) RAG bridges the gap between static model knowledge and dynamic external information. By integrating techniques such as: โ€“ Vector search โ€“ Embedding-based similarity scoring โ€“ Document chunking โ€“ Hybrid retrieval (dense + sparse) โ€“ Source attribution โ€“ Context injection โ€ฆRAG enhances the quality and factuality of responses. It enables models to โ€œrecallโ€ information they were never trained on, and grounds answers in external sourcesโ€”critical for enterprise-grade applications. 3. ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ RAG is still a passive architectureโ€”it retrieves and generates. AI Agents go a step further: they act. Agents perform tasks, execute code, call APIs, manage state, and iterate via feedback loops. They introduce key capabilities such as: โ€“ Planning and task decomposition โ€“ Execution pipelines โ€“ Long- and short-term memory integration โ€“ File access and API interaction โ€“ Use of frameworks like ReAct, LangChain Agents, AutoGen, and CrewAI This is where LLMs become active participants in workflows rather than just passive responders. 4. ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ This is the most advanced layerโ€”where we go beyond a single autonomous agent to multi-agent systems with role-specific behavior, memory sharing, and inter-agent communication. Core concepts include: โ€“ Multi-agent collaboration and task delegation โ€“ Modular role assignment and hierarchy โ€“ Goal-directed planning and lifecycle management โ€“ Protocols like MCP (Anthropicโ€™s Model Context Protocol) and A2A (Googleโ€™s Agent-to-Agent) โ€“ Long-term memory synchronization and feedback-based evolution Agentic AI is what enables truly autonomous, adaptive, and collaborative intelligence across distributed systems. Whether youโ€™re building enterprise copilots, AI-powered ETL systems, or autonomous task orchestration tools, knowing what each layer offersโ€”and where it falls shortโ€”will determine whether your AI system scales or breaks. If you found this helpful, share it with your team or network. If thereโ€™s something important you think I missed, feel free to comment or message meโ€”Iโ€™d be happy to include it in the next iteration. | 119 comments on LinkedIn
ยทlinkedin.comยท
Understanding LLMs, RAG, AI Agents, and Agentic AI
BREAKING: Claude launches Education. Free learning is now much faster with AI:
BREAKING: Claude launches Education. Free learning is now much faster with AI:
1. Set clear learning goalsย  โ†ณ Knowing what you want to learn makes it easier. โ†ณ Claude helps you define your path. 2. Provide context for your knowledgeย  โ†ณ Understanding the bigger picture is key.ย  โ†ณ Claude connects new ideas to what you already know. 3. Request detailed explanationsย  โ†ณ Sometimes, you need more than a quick answer.ย  โ†ณ Claude can dive deep into complex topics. 4. Get real-world examplesย  โ†ณ Learning is better with practical applications.ย  โ†ณ Claude shows how concepts work in the real world. 5. Practice writing and receive feedbackย  โ†ณ Writing helps solidify your knowledge.ย  โ†ณ Claude gives instant feedback to improve your skills. 6. Role-play for languages or codingย  โ†ณ Learning by doing is effective.ย  โ†ณ Claude can simulate conversations or coding scenarios. 7. Fact-check surprising claimsย  โ†ณ Misinformation is everywhere.ย  โ†ณ Claude helps you verify facts and claims. 8. Take breaks and reflect on learningย  โ†ณ Reflection is vital for understanding.ย  โ†ณ Claude reminds you to pause and think. 9. Keep a learning journalย  โ†ณ Tracking your progress is important.ย  โ†ณ Claude can help you log your journey. 10. Iterate and refine understandingย  โ†ณ Learning is a process.ย  โ†ณ Claude encourages you to improve your knowledge.ย  | 246 comments on LinkedIn
ยทlinkedin.comยท
BREAKING: Claude launches Education. Free learning is now much faster with AI:
New research shows that your learners arenโ€™t using AI to cheat - theyโ€™re using it to redesign your courses...
New research shows that your learners arenโ€™t using AI to cheat - theyโ€™re using it to redesign your courses...
Despite our obsession with AI's impact on "academic integrity," two recent analyses show that rather than asking AI for answers, learners are much more likely to use AI to redesign the learning experience in an attempt to learn more. Common strategies include asking AI to apply the protรฉgรฉ effect, using AI to apply the Pareto principle and enhancing levels of emotional metacognition within a learning experience, in the process redesigning the experience sometimes beyond recognition. The uncomfortable truth? Learners are effectively running a real-time audit of our design decisions, processes & practicesโ€”and as instructional designers, we don't come out too well. In this week's blog post, I explore what learner + AI behaviour reveals about our profession and how we might turn this into an opportunity for innovation in instrucitonal design practices and principles. Check out the full post using the link in comments. Happy innovating! Phil ๐Ÿ‘‹ | 16 comments on LinkedIn
ยทlinkedin.comยท
New research shows that your learners arenโ€™t using AI to cheat - theyโ€™re using it to redesign your courses...
Trends Artificial Intelligence - BOND Capitalai
Trends Artificial Intelligence - BOND Capitalai
Die Pflichtlektรผre zum Sonntag: Mary Meeker hat einen ihrer legendรคren Reports gedropped... Nach den jรคhrlichen "Internet Trends" nun ein 340 Seiten Brett ihrer Investment Firma Bond Capital ganz zum Thema AI. Superbes Gedankenfutter hinsichtlich u.a.: 1. Nutzerwachstum und Verbreitung โ€ข ChatGPT erreichte 800 Millionen wรถchentliche Nutzer in nur 17 Monaten โ€ข Verbreitung auรŸerhalb Nordamerikas liegt bei 90 Prozent โ€“ nach nur 3 Jahren โ€ข Vergleich: Das Internet brauchte dafรผr 23 Jahre โ€ข KI-Anwendungen skalieren global nahezu gleichzeitig 2. Investitionen und Infrastruktur โ€ข Big Tech (Apple, Microsoft, Google, Amazon, Meta, Nvidia) investiert รผber 212 Milliarden Dollar CapEx pro Jahr โ€ข KI wird zur neuen Infrastruktur โ€“ vergleichbar mit Strom oder Internet โ€ข Rechenzentren werden zu produktiven "KI-Fabriken" 3. Entwickler-ร–kosysteme explodieren โ€ข Google Gemini: 7 Millionen aktive Entwickler, +500 Prozent in 12 Monaten โ€ข NVIDIA-ร–kosystem: 6 Millionen Entwickler, +6x in sieben Jahren โ€ข Open Source spielt zunehmend eine Schlรผsselrolle, auch in China 4. Technologischer Fortschritt beschleunigt sich exponentiell โ€ข 260 Prozent Wachstum pro Jahr bei Trainingsdatenmengen โ€ข 360 Prozent Wachstum pro Jahr beim Compute-Aufwand fรผr Modelltraining โ€ข Bessere Algorithmen fรผhren zu 200 Prozent Effizienzsteigerung pro Jahr โ€ข Fortschritte bei Supercomputern ermรถglichen +150 Prozent Leistungszuwachs jรคhrlich 5. Monetarisierung ist real โ€“ aber teuer โ€ข OpenAI mit starkem Nutzerwachstum, aber weiterhin Milliardenverluste โ€ข Compute-Kosten steigen, Inferenzkosten pro Token sinken โ€ข Monetรคre Skalierung bleibt herausfordernd und kompetitiv 6. Arbeit und Gesellschaft verรคndern sich sichtbar โ€ข IT-KI-Stellen in den USA: +448 Prozent seit 2018 โ€ข Nicht-KI-IT-Stellen: โ€“9 Prozent โ€ข Erste autonome Taxis nehmen Marktanteile in Stรคdten wie San Francisco โ€ข KI-Scribes in der Medizin reduzieren administrativen Aufwand massiv 7. Wissen und Kommunikation erleben ein neues Zeitalter โ€ข Nach Buchdruck und Internet folgt die ร„ra der generativen Wissensverbreitung โ€ข Generative KI verรคndert, wie wir Wissen erzeugen, verbreiten und nutzen โ€ข Anwendungen wie ElevenLabs oder Spotify รผbersetzen Stimmen in Echtzeit, global skalierbar 8. Geopolitik wird zur KI-Strategie โ€ข USA und China investieren aggressiv in souverรคne KI-Modelle โ€ข Wer KI-Infrastruktur dominiert, definiert รถkonomische und politische Macht neu โ€ข Fรผhrende CTOs sprechen offen von einem neuen "Space Race" 9. Chancen und Risiken sind gewaltig โ€ข KI kann medizinische Forschung, Bildung und Kreativitรคt beflรผgeln โ€ข Gleichzeitig drohen Kontrollverlust, Missbrauch, Arbeitsplatzverdrรคngung, ethische Dilemmata Meinungen? Evangelos Papathanassiou Christian Herold Thorsten Muehl Christoph Deutschmann Constance Stein Rebecca Schalber Sandy Brueckner Dirk Hofmann Henning Tomforde Dr. Paul Elvers Katharina Neubert Laura Seiffe Ekaterina Schneider
ยทlinkedin.comยท
Trends Artificial Intelligence - BOND Capitalai
๐—ช๐—ฒ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐˜๐—ผ ๐—บ๐—ผ๐˜ƒ๐—ฒ ๐—ฏ๐—ฒ๐˜†๐—ผ๐—ป๐—ฑ ๐—ฐ๐—ฎ๐—น๐—น๐—ถ๐—ป๐—ด ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜†๐˜๐—ต๐—ถ๐—ป๐—ด ๐—ฎ๐—ป โ€œ๐—Ÿ๐—Ÿ๐— .โ€ โฌ‡๏ธ
๐—ช๐—ฒ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐˜๐—ผ ๐—บ๐—ผ๐˜ƒ๐—ฒ ๐—ฏ๐—ฒ๐˜†๐—ผ๐—ป๐—ฑ ๐—ฐ๐—ฎ๐—น๐—น๐—ถ๐—ป๐—ด ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜†๐˜๐—ต๐—ถ๐—ป๐—ด ๐—ฎ๐—ป โ€œ๐—Ÿ๐—Ÿ๐— .โ€ โฌ‡๏ธ
In 2025, the AI landscape has evolved far beyond just large language models. Knowing which model to use for your specific use case โ€” and how โ€” is becoming a strategic advantage. Letโ€™s break down theย 8 most important model typesย and what theyโ€™re actually built to do: โฌ‡๏ธ 1. ๐—Ÿ๐—Ÿ๐—  โ€“ ๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Your ChatGPT-style model. Handles text, predicts the next token, and powers 90% of GenAI hype. ๐Ÿ›  Use case: content, code, convos. 2. ๐—Ÿ๐—–๐—  โ€“ ๐—Ÿ๐—ฎ๐˜๐—ฒ๐—ป๐˜ ๐—–๐—ผ๐—ป๐˜€๐—ถ๐˜€๐˜๐—ฒ๐—ป๐—ฐ๐˜† ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Lightweight, diffusion-style models. Fast, quantized, and efficient โ€” perfect for real-time or edge deployment. ๐Ÿ›  Use case: image generation, optimized inference. 3. ๐—Ÿ๐—”๐—  โ€“ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐—”๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Where LLM meets planning. Adds memory, task breakdown, and intent recognition. ๐Ÿ›  Use case: AI agents, tool use, step-by-step execution. 4. ๐— ๐—ผ๐—˜ โ€“ ๐— ๐—ถ๐˜…๐˜๐˜‚๐—ฟ๐—ฒ ๐—ผ๐—ณ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜๐˜€ โ†’ One model, many minds. Routes input to the right โ€œexpertโ€ model slice โ€” dynamic, scalable, efficient. ๐Ÿ›  Use case: high-performance model serving at low compute cost. 5. ๐—ฉ๐—Ÿ๐—  โ€“ ๐—ฉ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Multimodal beast. Combines image + text understanding via shared embeddings. ๐Ÿ›  Use case: Gemini, GPT-4o, search, robotics, assistive tech. 6. ๐—ฆ๐—Ÿ๐—  โ€“ ๐—ฆ๐—บ๐—ฎ๐—น๐—น ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Tiny but mighty. Designed for edge use, fast inference, low latency, efficient memory. ๐Ÿ›  Use case: on-device AI, chatbots, privacy-first GenAI. 7. ๐— ๐—Ÿ๐—  โ€“ ๐— ๐—ฎ๐˜€๐—ธ๐—ฒ๐—ฑ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ The OG foundation model. Predicts masked tokens using bidirectional context. ๐Ÿ›  Use case: search, classification, embeddings, pretraining. 8. ๐—ฆ๐—”๐—  โ€“ ๐—ฆ๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜ ๐—”๐—ป๐˜†๐˜๐—ต๐—ถ๐—ป๐—ด ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Vision model for pixel-level understanding. Highlights, segments, and understands *everything* in an image. ๐Ÿ›  Use case: medical imaging, AR, robotics, visual agents. Understanding these distinctions is essentialย for selecting the right model architecture for specific applications, enabling more effective, scalable, and contextually appropriate AI interactions. While these are some of the most prominent specialized AI models, there are many more emerging across language, vision, speech, and robotics โ€” each optimized for specific tasks and domains. LLM, VLM, MoE, SLM, LCMย โ†’ GenAI LAM, MLM, SAMย โ†’ Not classic GenAI, butย critical building blocksย for AI agents, reasoning, and multimodal systems ๐—œ ๐—ฒ๐˜…๐—ฝ๐—น๐—ผ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜๐˜€ โ€” ๐—ฎ๐—ป๐—ฑ ๐˜„๐—ต๐—ฎ๐˜ ๐˜๐—ต๐—ฒ๐˜† ๐—บ๐—ฒ๐—ฎ๐—ป ๐—ณ๐—ผ๐—ฟ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€ โ€” ๐—ถ๐—ป ๐—บ๐˜† ๐˜„๐—ฒ๐—ฒ๐—ธ๐—น๐˜† ๐—ป๐—ฒ๐˜„๐˜€๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ. ๐—ฌ๐—ผ๐˜‚ ๐—ฐ๐—ฎ๐—ป ๐˜€๐˜‚๐—ฏ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ: https://lnkd.in/dbf74Y9E Kudos for the graphic goes to Generative AI ! | 45 comments on LinkedIn
ยทlinkedin.comยท
๐—ช๐—ฒ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐˜๐—ผ ๐—บ๐—ผ๐˜ƒ๐—ฒ ๐—ฏ๐—ฒ๐˜†๐—ผ๐—ป๐—ฑ ๐—ฐ๐—ฎ๐—น๐—น๐—ถ๐—ป๐—ด ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜†๐˜๐—ต๐—ถ๐—ป๐—ด ๐—ฎ๐—ป โ€œ๐—Ÿ๐—Ÿ๐— .โ€ โฌ‡๏ธ
๐—ฅ๐—ฒ๐—ถ๐—ฐ๐—ต๐˜„๐—ฒ๐—ถ๐˜๐—ฒ๐—ป-๐—ž.๐—ข. ๐—ณรผ๐—ฟ ๐˜ƒ๐—ถ๐—ฒ๐—น๐—ฒ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€. Erst wandern Suchanfragen von Google zu ChatGPT - jetzt beantwortet sie Google direkt in den AI-Overviews.
๐—ฅ๐—ฒ๐—ถ๐—ฐ๐—ต๐˜„๐—ฒ๐—ถ๐˜๐—ฒ๐—ป-๐—ž.๐—ข. ๐—ณรผ๐—ฟ ๐˜ƒ๐—ถ๐—ฒ๐—น๐—ฒ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€. Erst wandern Suchanfragen von Google zu ChatGPT - jetzt beantwortet sie Google direkt in den AI-Overviews.
๐Ÿšจ Studien zeigen bereits hohe Traffic-Rรผckgรคnge. ย  Was kรถnnen Redakteure und Publisher tun? ย  ๐Ÿ‘Š Deshalb bin ich mit Matthรคus Michalik in den Podcast-Ring gestiegen: ย  Wir haben 2 Folgen aufgenommen: ๐—š๐—˜๐—ข ๐˜€๐˜๐—ฎ๐˜๐˜ ๐—ฆ๐—˜๐—ข & ๐—ช๐—ถ๐—ฒ ๐—ฝ๐—น๐—ฎ๐˜๐˜‡๐—ถ๐—ฒ๐—ฟ๐—ฒ๐—ป ๐˜„๐—ถ๐—ฟ ๐˜‚๐—ป๐˜€ ๐—ถ๐—ป ๐—ฑ๐—ฒ๐—ป ๐—”๐—œ-๐—ข๐˜ƒ๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„? ย  Als Teaser fรผr euch: 4๏ธโƒฃ Sofort-Tipps fรผr GEO (Generative Engine Optimization) 1. Autoritรคt & Vertrauen belegen ๐Ÿ”ธ Quellen, Zitate und fachliche Referenzen explizit nennen. ๐Ÿ”ธErgebnis: bis zu +40 % hรถhere Wahrscheinlichkeit, in KI-Antworten zitiert zu werden. 2. Zahlen sprechen lassen ๐Ÿ”ธStatistiken, Studien-Daten und eigene Benchmarks einbauen. ๐Ÿ”ธKI-Modelle gewichten quantitative Infos stรคrker โ†’ +30 % Relevanz-Boost. 3. Klare Struktur, einfache Sprache ๐Ÿ”ธKurze Absรคtze, Bullet-Points, FAQs, sprechende Zwischenยญรผberschriften. ๐Ÿ”ธErleichtert Parsing durch LLMs und erhรถht die Chance auf direkte รœbernahme. 4. Gezielter Fachwort-Einsatz ๐Ÿ”ธRelevante Terminologie und Branchen-Jargon bewusst einstreuen. ๐Ÿ”ธSignalisiert Expertise und verbessert das Matching fรผr spezifische Nutzerยญanfragen. โ€ผ๏ธ Kurzformel: Autoritรคt + Daten + Klarheit + Terminologie = Sichtbarkeit Chat-Antworten. ย  ๐—ฆ๐—ถ๐—ฐ๐—ต๐˜๐—ฏ๐—ฎ๐—ฟ๐—ธ๐—ฒ๐—ถ๐˜ ๐—ถ๐—ป ๐—”๐—œ ๐—ข๐˜ƒ๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€ โ€“ ๐—ฑ๐—ฎ๐˜€ ๐—บ๐˜‚๐˜€๐˜€๐˜ ๐—ฑ๐˜‚ ๐—ฏ๐—ฒ๐—ฎ๐—ฐ๐—ต๐˜๐—ฒ๐—ป ๐Ÿ”ธGrundvoraussetzung: Deine Seite muss im Google-Index stehen und bereits ein gewisses Vertrauensniveau besitzen. Dann gilt: ๐Ÿ”ธHochwertige, faktenbasierte Inhalte: prรคzise, recherchiert, aktuell. ๐Ÿ”ธKlare Struktur: H-รœberschriften, Listen, Tabellen โ†’ erleichtert Parsing. ๐Ÿ”ธStrukturierte Daten (Schema.org): zeigt der KI, was welche Bedeutung hat. ๐Ÿ”ธUX & Performance: schnelle Ladezeiten, sauberes Mobile-Design. ๐Ÿ”ธE-E-A-T pflegen: Expertise, Erfahrung, Autoritรคt, Vertrauen kontinuierlich belegen (Autorenยญprofile, Quellen, Backlinks). ๐Ÿด ๐—ฃ๐—ฟ๐—ฎ๐˜…๐—ถ๐˜€-๐—ง๐—ถ๐—ฝ๐—ฝ๐˜€ ๐—ณรผ๐—ฟ ๐—ฑ๐—ถ๐—ฒ ๐—ฃ๐—ผ๐˜€๐˜-๐—ฆ๐—˜๐—ข-ร„๐—ฟ๐—ฎ โœ”๏ธ Qualitรคt vor Quantitรคt โ€“ fewer, deeper pieces mit klarer Expertise. โœ”๏ธStruktur first โ€“ H-Tags, Bullet-Points, FAQ-Blรถcke, Schema. โœ”๏ธUser Experience optimieren โ€“ Speed, Navigation, mobile UX. โœ”๏ธMehrwert รผber die KI hinaus โ€“ eigene Daten, Cases, Meinungen. โœ”๏ธTraffic-Quellen streuen โ€“ Social, E-Mail, Communities, Partnerschaften. โœ”๏ธMonitoring & Anpassung โ€“ beobachte, welche Seiten in AI Overviews landen, und iteriere. โœ”๏ธMultimedial denken โ€“ Videos, Podcasts, Infografiken ergรคnzen Text. โœ”๏ธE-E-A-T kontinuierlich stรคrken โ€“ Fachautor:innen, Referenzen, Reviews, Backlinks. ๐—ž๐˜‚๐—ฟ๐˜‡ยญ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฒ๐—น: Qualitรคt + Struktur + Mehrwert + Vertrauen + Channel-Mix = langfristige Sichtbarkeit โ€“ auch in der KI-Suche. โ“ Wie geht ihr den Battle um Sichtbarkeit und Traffic an? Lasst uns diskutieren. ๐Ÿ‘‡ | 12 Kommentare auf LinkedIn
ยทlinkedin.comยท
๐—ฅ๐—ฒ๐—ถ๐—ฐ๐—ต๐˜„๐—ฒ๐—ถ๐˜๐—ฒ๐—ป-๐—ž.๐—ข. ๐—ณรผ๐—ฟ ๐˜ƒ๐—ถ๐—ฒ๐—น๐—ฒ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€. Erst wandern Suchanfragen von Google zu ChatGPT - jetzt beantwortet sie Google direkt in den AI-Overviews.
Wenn Du nochmal bei 0 starten kรถnntest, wie wรผrdest du eine Daten- und KI-Organisation aufbauen?
Wenn Du nochmal bei 0 starten kรถnntest, wie wรผrdest du eine Daten- und KI-Organisation aufbauen?
Genau das wollte ich von Claudia Pohlink wissen, die eine beeindruckende Karriere in der Daten- und KI-Welt bei Telekom, Deutsche Bahn und FIEGE hingelegt hat. Also, wie sieht der Anti-Hype Blueprint aus? ๐Ÿญ. ๐—ฆ๐˜๐—ฎ๐—บ๐—บ๐—ฑ๐—ฎ๐˜๐—ฒ๐—ป ๐—ฑ๐—ฒ๐—ณ๐—ถ๐—ป๐—ถ๐—ฒ๐—ฟ๐—ฒ๐—ป ๐˜‚๐—ป๐—ฑ ๐˜€๐˜๐—ฟ๐˜‚๐—ธ๐˜๐˜‚๐—ฟ๐—ถ๐—ฒ๐—ฟ๐—ฒ๐—ป Starte mit der Definition deiner Kerndomรคnen und Stammdaten. Bestimme fรผhrende Systeme fรผr jede Datendomรคne, bevor du Tools auswรคhlst. Dies schafft ein stabiles Fundament fรผr alle KI-Aktivitรคten. ๐Ÿฎ. ๐—˜๐—ฟ๐˜€๐˜๐—ฒ ๐—˜๐—ฟ๐—ณ๐—ผ๐—น๐—ด๐˜€๐—ด๐—ฒ๐˜€๐—ฐ๐—ต๐—ถ๐—ฐ๐—ต๐˜๐—ฒ ๐˜€๐—ฐ๐—ต๐—ฟ๐—ฒ๐—ถ๐—ฏ๐—ฒ๐—ป Identifiziere einen ersten Use Case, zum Beispiel mit dem Controlling-Bereich, wo bereits Datenaffinitรคt besteht. Zeige schnelle Erfolge, um Management-Support zu gewinnen. ๐Ÿฏ. ๐——๐—ฎ๐˜€ ๐Ÿฏ-๐—›๐—ฎฬˆ๐˜‚๐˜€๐—ฒ๐—ฟ-๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐—น ๐—ถ๐—บ๐—ฝ๐—น๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐—ถ๐—ฒ๐—ฟ๐—ฒ๐—ป โ€ข House of Data: Grundlagen, Governance, Architektur โ€ข House of AI: Use Cases, Data Scientists, Engineers โ€ข House of 3C: Change, Communication, Community Diese 3 Bereiche sollten zu gleichen Teilen aufgebaut werden. Keiner kann ohne den anderen fรผr nachhaltige Daten- und KI-Implementierung. Die Leads sollten zu Beginn intern aufgebaut werden, extern kรถnnen operative Ressourcen zugekauft werden. ๐Ÿฐ. ๐—•๐—ฎ๐—น๐—ฎ๐—ป๐—ฐ๐—ฒ ๐˜‡๐˜„๐—ถ๐˜€๐—ฐ๐—ต๐—ฒ๐—ป ๐˜‡๐—ฒ๐—ป๐˜๐—ฟ๐—ฎ๐—น ๐˜‚๐—ป๐—ฑ ๐—ฑ๐—ฒ๐˜‡๐—ฒ๐—ป๐˜๐—ฟ๐—ฎ๐—น ๐—ณ๐—ถ๐—ป๐—ฑ๐—ฒ๐—ป Etabliere zentrale Standards und Koordination, befรคhige aber gleichzeitig dezentrale Teams durch Multiplikatoren-Ideen wie KI-Awards, Schulungen und Hackathons. Laut Claudia ist diese Balance eine der grรถรŸten Herausforderungen in der Umsetzung. ๐Ÿฑ. ๐—ฃ๐—ฟ๐—ฎ๐—ด๐—บ๐—ฎ๐˜๐—ถ๐˜€๐—ฐ๐—ต ๐—ฝ๐—น๐—ฎ๐—ป๐—ฒ๐—ป ๐˜€๐˜๐—ฎ๐˜๐˜ ๐˜๐—ต๐—ฒ๐—ผ๐—ฟ๐—ฒ๐˜๐—ถ๐˜€๐—ถ๐—ฒ๐—ฟ๐—ฒ๐—ป Erstelle 6-12-Monats-Plรคne statt langfristiger Strategien. Dokumentiere Erfahrungen systematisch, auch Misserfolge, und passe deine Plรคne regelmรครŸig an. Ich weiรŸ, wie viele Mittelstรคndler vor der groรŸen Aufgabe stehen, Daten- und KI-Kompetenzen und Strukturen im Unternehmen aufzubauen. Claudia's Erfahrungen sind eine echte Schatzkiste. Ganz ohne Buzzwords, Hype oder Selbstprofilierung. Claudia, 1000 Dank fรผr deine Offenheit und dass du uns an deinen Erfahrungen teilhaben lรคsst! Was sagt ihr zum Blueprint? | 22 Kommentare auf LinkedIn
ยทlinkedin.comยท
Wenn Du nochmal bei 0 starten kรถnntest, wie wรผrdest du eine Daten- und KI-Organisation aufbauen?
๐—ช๐—ถ๐—ฒ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—บ๐—ถ๐˜๐—ต๐—ถ๐—น๐—ณ๐—ฒ ๐—ฑ๐—ฒ๐—ฟ ๐—ž๐—œ ๐—ฑ๐—ฎ๐˜€ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ป๐—ฒ๐˜ ๐—ป๐—ฒ๐˜‚ ๐—ฑ๐—ฒ๐—ณ๐—ถ๐—ป๐—ถ๐—ฒ๐—ฟ๐˜
๐—ช๐—ถ๐—ฒ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—บ๐—ถ๐˜๐—ต๐—ถ๐—น๐—ณ๐—ฒ ๐—ฑ๐—ฒ๐—ฟ ๐—ž๐—œ ๐—ฑ๐—ฎ๐˜€ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ป๐—ฒ๐˜ ๐—ป๐—ฒ๐˜‚ ๐—ฑ๐—ฒ๐—ณ๐—ถ๐—ป๐—ถ๐—ฒ๐—ฟ๐˜
Mit seinem AI Mode und dem Agenten Mariner zieht Google eine Plattformschicht รผber das offene Web. Google transformiert sich von einer klassischen Suchmaschine zum zentralen Marktplatz, Assistenten und Zahlungsdienstleister. Nutzer kรถnnen kรผnftig Produkte direkt in der Google-Suche finden, vergleichen, kaufen und bezahlen โ€“ ohne die Plattform zu verlassen. Diese Entwicklung hat weitreichende Folgen fรผr das gesamte Internet-ร–kosystem. Die Auswirkungen treffen nicht nur klassische Online-Hรคndler, sondern auch Marktplatzgiganten wie Amazon, Verlage, รœbersetzungsdienste wie DeepL, Reservierungsanbieter wie OpenTable, Buchungsseiten wie Ticketmaster oder Sprachschulen wie Duolingo. Wer weiterhin sichtbar und relevant bleiben will, muss sich auf die neuen Spielregeln einstellen, in KI-Overviews und Shopping-Graphen prรคsent sein und seine Inhalte fรผr KI-Systeme optimieren. Denn OpenAI baut etwas ร„hnliches auf und auch Amazon bewegt sich in diese Richtung. Der Wettstreit der Plattformen ist damit endgรผltig im KI-Zeitalter angekommen. Weiterlesen auf F.A.Z. PRO Digitalwirtschaft (โ‚ฌ) โ–ถ๏ธŽ https://lnkd.in/e-r8k7upโ‚ฌ Frankfurter Allgemeine Zeitung
ยทlinkedin.comยท
๐—ช๐—ถ๐—ฒ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—บ๐—ถ๐˜๐—ต๐—ถ๐—น๐—ณ๐—ฒ ๐—ฑ๐—ฒ๐—ฟ ๐—ž๐—œ ๐—ฑ๐—ฎ๐˜€ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ป๐—ฒ๐˜ ๐—ป๐—ฒ๐˜‚ ๐—ฑ๐—ฒ๐—ณ๐—ถ๐—ป๐—ถ๐—ฒ๐—ฟ๐˜
In a new paper, British philosopher Andy Clark (author of the 2003 book Natural Born Cyborgs, see comment below) offers a rebuttal to the pervasive anxiety surrounding new technologies, particularly generative AI, by reframing the nature of human cognition.
In a new paper, British philosopher Andy Clark (author of the 2003 book Natural Born Cyborgs, see comment below) offers a rebuttal to the pervasive anxiety surrounding new technologies, particularly generative AI, by reframing the nature of human cognition.
In a new paper, British philosopher Andy Clark (author of the 2003 book Natural Born Cyborgs, see comment below) offers a rebuttal to the pervasive anxiety surrounding new technologies, particularly generative AI, by reframing the nature of human cognition. He begins by acknowledging familiar concerns: that GPS erodes our spatial memory, search engines inflate our sense of knowledge, and tools like ChatGPT might diminish creativity or encourage intellectual laziness. These fears, Clark observes, mirror ancient worries, like Platoโ€™s warning that writing would weaken memory, and stem from a deeply ingrained but flawed assumption: the idea that the mind is confined to the biological brain. Clark challenges this perspective with his extended mind thesis, arguing that humans have always been cognitive hybrids, seamlessly integrating external tools into our thinking processes. From the gestures we use to offload mental effort to the scribbled notes that help us untangle complex problems, our cognition has never been limited to what happens inside our skulls. This perspective transforms the debate about AI from a zero-sum game, where technology is seen as replacing human abilities, into a discussion about how we distribute cognitive labour across a network of biological and technological resources. Recent advances in neuroscience lend weight to this view. Theories like predictive processing suggest that the brain is fundamentally geared toward minimising uncertainty by engaging with the world around it. Whether probing a riverโ€™s depth with a stick or querying ChatGPT to clarify an idea, the brain doesnโ€™t distinguish between internal and external problem-solvingโ€”it simply seeks the most efficient path to resolution. This fluid interplay between mind and tool has shaped human history, from the invention of stone tools to the design of modern cities, each innovation redistributing cognitive tasks and expanding what we can achieve. Generative AI, in Clarkโ€™s view, is the latest chapter in this story. While critics warn that it might stifle originality or turn us into passive curators of machine-generated content, evidence suggests a more nuanced reality. The key, Clark argues, lies in how we integrate these technologies into our cognitive ecosystems. https://lnkd.in/gUmxE57w | 41 comments on LinkedIn
ยทlinkedin.comยท
In a new paper, British philosopher Andy Clark (author of the 2003 book Natural Born Cyborgs, see comment below) offers a rebuttal to the pervasive anxiety surrounding new technologies, particularly generative AI, by reframing the nature of human cognition.
๐—”๐˜ ๐—œ/๐—ข 2025, Google ๐˜€๐—ต๐—ผ๐˜„๐—ฒ๐—ฑ ๐˜‚๐˜€ ๐˜„๐—ต๐—ฎ๐˜ ๐—”๐—œ-๐—ณ๐—ถ๐—ฟ๐˜€๐˜โ€ฆ | Andreas Horn | 61 comments
๐—”๐˜ ๐—œ/๐—ข 2025, Google ๐˜€๐—ต๐—ผ๐˜„๐—ฒ๐—ฑ ๐˜‚๐˜€ ๐˜„๐—ต๐—ฎ๐˜ ๐—”๐—œ-๐—ณ๐—ถ๐—ฟ๐˜€๐˜โ€ฆ | Andreas Horn | 61 comments
๐—”๐˜ ๐—œ/๐—ข 2025, Google ๐˜€๐—ต๐—ผ๐˜„๐—ฒ๐—ฑ ๐˜‚๐˜€ ๐˜„๐—ต๐—ฎ๐˜ ๐—”๐—œ-๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฅ๐—˜๐—”๐—Ÿ๐—Ÿ๐—ฌ ๐—บ๐—ฒ๐—ฎ๐—ป๐˜€. ๐—›๐—ฒ๐—ฟ๐—ฒโ€™๐˜€ ๐˜„๐—ต๐—ฎ๐˜ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—ฎ๐—ป๐—ป๐—ผ๐˜‚๐—ป๐—ฐ๐—ฒ๐—ฑ: โฌ‡๏ธ The company's flagship developer event Google I/O 2025 was held last night in Mountain View, California. ๐—ง๐—Ÿ๐——๐—ฅ: Google is turning Gemini into the AI operating system for everything โ€” with agents now embedded across Search, Chrome, Workspace, Android, and more. If you donโ€™t have time for the full event, hereโ€™s a curated ๐˜€๐˜‚๐—ฝ๐—ฒ๐—ฟ๐—ฐ๐˜‚๐˜ of the highlights that really matter. ๐—ž๐—ฒ๐˜† ๐—บ๐—ผ๐—บ๐—ฒ๐—ป๐˜๐˜€ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—œ/๐—ข ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ: 0:00 ๐—œ๐—ป๐˜๐—ฟ๐—ผ โ€“ AI-native from the ground up 0:11 ๐—š๐—ฒ๐—บ๐—ถ๐—ป๐—ถ ๐—ฝ๐—น๐—ฎ๐˜†๐˜€ ๐—ฎ ๐—ฃ๐—ผ๐—ธ๐—ฒ๐—บ๐—ผ๐—ป ๐—ด๐—ฎ๐—บ๐—ฒ โ€” memory, reasoning, and code 0:30 ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—•๐—ฒ๐—ฎ๐—บ โ€“ Real-time 3D video chat with AI 1:08 ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐— ๐—ฒ๐—ฒ๐˜ โ€“ Speech-to-speech translation, live 1:27 ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐— ๐—ฎ๐—ฟ๐—ถ๐—ป๐—ฒ๐—ฟ โ€“ AI agents that book, plan, filter, decide 2:07 ๐—ฃ๐—ฒ๐—ฟ๐˜€๐—ผ๐—ป๐—ฎ๐—น ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ โ€“ Gemini gets memory and task awareness 2:40 ๐—š๐—ฒ๐—บ๐—ถ๐—ป๐—ถ ๐Ÿฎ.๐Ÿฑ ๐—ฃ๐—ฟ๐—ผ + ๐—™๐—น๐—ฎ๐˜€๐—ต โ€“ New SOTA models, LMArena leader 4:57 ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—”๐˜€๐˜๐—ฟ๐—ฎ โ€“ Multimodal, fast-response agent that sees and hears 5:32 ๐—”๐—œ ๐— ๐—ผ๐—ฑ๐—ฒ โ€“ Overlay for restaurants, bookings, prices, events 7:10 ๐—ฆ๐—ต๐—ผ๐—ฝ๐—ฝ๐—ถ๐—ป๐—ด โ€“ Track, compare, and auto-buy with Google Pay 8:34 ๐—š๐—ฒ๐—บ๐—ถ๐—ป๐—ถ ๐—Ÿ๐—ถ๐˜ƒ๐—ฒ โ€“ Screen sharing + live AI guidance 8:59 ๐——๐—ฒ๐—ฒ๐—ฝ ๐—ฅ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—”๐—ด๐—ฒ๐—ป๐˜ โ€“ Upload files, get insights 9:12 ๐—–๐—ฎ๐—ป๐˜ƒ๐—ฎ๐˜€ โ€“ Live, collaborative AI whiteboard 9:31 ๐—š๐—ฒ๐—บ๐—ถ๐—ป๐—ถ ๐—ถ๐—ป ๐—–๐—ต๐—ฟ๐—ผ๐—บ๐—ฒ โ€“ AI understands and acts on any webpage 9:51 ๐—œ๐—บ๐—ฎ๐—ด๐—ฒ๐—ป ๐Ÿฐ โ€“ Next-gen image generation 10:23 ๐—ฉ๐—ฒ๐—ผ ๐Ÿฏ โ€“ Ultra-realistic video model 11:01 ๐—Ÿ๐˜†๐—ฟ๐—ถ๐—ฎ ๐Ÿฎ โ€“ AI-powered music composition 11:56 ๐—™๐—น๐—ผ๐˜„๐˜€ โ€“ Multimodal, promptable AI video creation 12:39 ๐—”๐—ป๐—ฑ๐—ฟ๐—ผ๐—ถ๐—ฑ ๐—ซ๐—ฅ โ€“ AI-first spatial computing 12:57 ๐—ฆ๐—ฎ๐—บ๐˜€๐˜‚๐—ป๐—ด ๐— ๐—ผ๐—ผ๐—ต๐—ฎ๐—ป โ€“ Googleโ€™s XR headset revealed 13:16 ๐—Ÿ๐—ถ๐˜ƒ๐—ฒ ๐—ด๐—น๐—ฎ๐˜€๐˜€๐—ฒ๐˜€ ๐—ฑ๐—ฒ๐—บ๐—ผ โ€“ Gemini + XR = real-time AI overlay Super insightful and forward-looking: Googleโ€™s AI strategy just went full stack. Even if some of these projects donโ€™t make it past the prototype stage, the direction is obvious: AI is being integrated into everything. LLMs โ€” Gemini, in this case โ€” are rapidly becoming the new operating system and everything will be powered by AI Agents across all products. Full keynote: https://lnkd.in/dPFFtyZ9 Supercut: https://lnkd.in/d-eBNGjw Enjoy watching! | 61 comments on LinkedIn
ยทlinkedin.comยท
๐—”๐˜ ๐—œ/๐—ข 2025, Google ๐˜€๐—ต๐—ผ๐˜„๐—ฒ๐—ฑ ๐˜‚๐˜€ ๐˜„๐—ต๐—ฎ๐˜ ๐—”๐—œ-๐—ณ๐—ถ๐—ฟ๐˜€๐˜โ€ฆ | Andreas Horn | 61 comments
Recent research showed that every 7 months AI doubles the length (in human time taken) of the task they can solve. AI researcher Toby Ord has built on the original study to show that AI success probability declines exponentially with task length, defining model capabilities with a โ€˜half-life.โ€™
Recent research showed that every 7 months AI doubles the length (in human time taken) of the task they can solve. AI researcher Toby Ord has built on the original study to show that AI success probability declines exponentially with task length, defining model capabilities with a โ€˜half-life.โ€™
One of the most interesting things about the original research is that it provides a clear metric for measuring AI performance improvement that is not tied to benchmarks that keep on being superceded, needing new benchmarks. We can now rank AI models and agents by their half-life - the time for human tasks for which they achieve 50% success rate. Of course we are usually more interested in models that can achieve 99+% success rates - depending on the task - but the relative consistency of the half life decay means the T50 threshold predicts whatever success rate we aim for, both today, and at future dates if the original trend holds Generally the decay is due to cumulative errors or going off course. But the decay is not always consistent, as there can be subtasks of uneven difficulty, or agents can recover from early mistakes. Interestingly, humans don't follow pure exponential decay curves. Our success rate falls off more slowly over very long tasks, suggesting we have broader context, allowing us to recover from early mistakes. The research was applied to tasks in research or software engineering. The dynamics of this performance evolution may or may not apply to other domains. Certainly, this reframing of assessing the development of AI capabilities and its comparison to human work is a very useful advance to the benchmarking approach.
ยทlinkedin.comยท
Recent research showed that every 7 months AI doubles the length (in human time taken) of the task they can solve. AI researcher Toby Ord has built on the original study to show that AI success probability declines exponentially with task length, defining model capabilities with a โ€˜half-life.โ€™
HR + IT; The Future of Work? That question has been on my mind since I first read about Moderna merging its HR and Tech departments. They are redefining what it means to be a future-ready company.
HR + IT; The Future of Work? That question has been on my mind since I first read about Moderna merging its HR and Tech departments. They are redefining what it means to be a future-ready company.
Hereโ€™s what I take away: ๐Ÿšซ HR is no longer just about people. ๐Ÿšซ IT is no longer just about systems. โœ… The real value lies in how people and systems interactโ€”seamlessly, intelligently, adaptively. Letโ€™s be honest, most organizations still operate in silos: - HR builds talent and culture - IT builds systems and infrastructure But the future of work is all about integration. What if you make that happen? Think about it: Can you redesign work itself? Not roles. Not org charts. But the actual FLOW of work. Because thatโ€™s what Modernaโ€™s doing. They are reimagining how humans and machines co-create value. IBM is doing the same. They use HR AI agents that handle questions, routes issues, and manage HR processes. This isnโ€™t about cutting costs. Itโ€™s about building a business that adapts faster to the next disruption. They are building resilience. I recognize that HR and IT both have unique complexities, and in many companies are simply too far apart or too large merge shortly. Still, it still got me thinking. As an HR leader: -> How comfortable are you with data, automation, and AI? -> Could you confidently lead both people strategy and digital infrastructure? -> What would need to change for that answer to be yes? This isnโ€™t a tech conversation. Itโ€™s an organization and leadership revolution. The next era of HR wonโ€™t be like today's HR at all. It will be integrated, tech-savvy, and central to how business gets done. Time to level up. Are you ready? #futureofwork #hrtech #ai Picture and story credits: Isabelle Bousquette ๐Ÿ™ | 34 comments on LinkedIn
ยทlinkedin.comยท
HR + IT; The Future of Work? That question has been on my mind since I first read about Moderna merging its HR and Tech departments. They are redefining what it means to be a future-ready company.
Research on over 3500 workers points to two outcomes from use of GenAI: immediate performance boosts, and a decrease in motivation and increase in boredom whenโ€ฆ
Research on over 3500 workers points to two outcomes from use of GenAI: immediate performance boosts, and a decrease in motivation and increase in boredom whenโ€ฆ
switching to non-augmented tasks. It is definitely interesting research, but I am very cautious about the conclusions reached by the authors, partly since they are to a degree contradictory, and also not necessarily generalizable. The authors implicitly criticize AI for removing the โ€œmost cognitively demanding partsโ€ of work, implying that this reduces fulfillment. But the outputs and productivity are clearly improved. Are they suggesting workers create inferior output for the sake of engagement? It is worth noting that other recent research points to improved emotion and engaement with genAI collaboration. The emotional impact of genAI collaboration will vary substantially across use cases, especially with the nature of the task, and certainly with the cultural context. It appears the use case here was performance reviews, which is not representative of many other types of cognitive work. The authors also say that AI-assisted tasks reduce usersโ€™ sense of control, thus lowering motivation. But they say this sense of control is restored during subsequent solo tasks, even though those are when boredom and disengagement rise. Having said that, for some tasks and work design the issues they raise could be real and substantial. These are the sound remedies they suggest: โžก๏ธBlend AI and Human Contributions: Use gen AI as a foundation for tasks while encouraging humans to personalize, expand, and refine outputs to retain creativity and ownership. โžก๏ธDesign Engaging Solo Tasks: Follow AI-supported work with autonomous, creative tasks to help employees stay motivated and exercise their own skills. โžก๏ธMake AI Collaboration Transparent: Clearly communicate AIโ€™s supporting role to preserve employeesโ€™ sense of control and fulfillment in their contributions. โžก๏ธRotate Between Tasks: Alternate between independent and AI-assisted tasks to maintain engagement and productivity throughout the workday. โžก๏ธTrain Employees to Use AI Mindfully: Provide training that helps employees critically and strategically integrate AI, strengthening their autonomy and judgment.
ยทlinkedin.comยท
Research on over 3500 workers points to two outcomes from use of GenAI: immediate performance boosts, and a decrease in motivation and increase in boredom whenโ€ฆ
Best AI Tools for Deep Research (Ranked by a PhD, Not Hype)
Best AI Tools for Deep Research (Ranked by a PhD, Not Hype)
Today, Iโ€™m diving into the world of deep research tools to find out which platforms are truly the most helpful for academic work. โ–ผ โ–ฝ Sign up for my FREE new...
ยทyoutube.comยท
Best AI Tools for Deep Research (Ranked by a PhD, Not Hype)
To stop playing catch-up and stay ahead of AI, we need to form a point of view on the future of work. A POV on FOW, if you will.
To stop playing catch-up and stay ahead of AI, we need to form a point of view on the future of work. A POV on FOW, if you will.
There is a lot of talk about how L&D needs to be proactive, not reactive. But how do we do that when technology is moving so fast? It starts with having a point of view on where the world of work is headed, and then building a bridge to that future. Because if we only make incremental changes from where we are now, we'll likely be playing catch-up for a long timeโ€”and risk preparing people for the work of today, not tomorrow. Here are some of the forces I think about a lot these days: ๐ŸŽ“ AI seems to be denting the supply of entry level jobs. What does that mean for the talent pipeline later down the line? And how should we onboard the graduates that *do* get employed so they can add value on top of AI? ๐Ÿ“ˆ AI gets lower performers closer to higher performers (HBS & BCG study), and individuals working with AI match the performance of *teams* without AI (HBS & P&G study). How do we evaluate, recognise and enhance expertise in such a world? ๐Ÿ Vibe coding/marketing/learning/something else, single founder unicorns, service-as-a-software (not software-as-a-service!) and zero latency economy are just some of the predictions that would affect both the nature and pace of work. What support would our people and organisations need to adapt? L&D isn't short on AI tools. What we need is a visionโ€”to imagine how AI will reshape performance, learning, and the world of work at large. And, ultimately, what L&D needs to ๐˜ฃ๐˜ฆ๐˜ค๐˜ฐ๐˜ฎ๐˜ฆ to have a role in it. Nodes #AI #HR #Learning #Talent #FutureOfWork | 12 comments on LinkedIn
ยทlinkedin.comยท
To stop playing catch-up and stay ahead of AI, we need to form a point of view on the future of work. A POV on FOW, if you will.
In their โ€œthousand flowersโ€ strategy J&J seeded 900+ GenAI use cases. Using clear metrics they found that 10โ€“15% of these drove 80% of the value, and pivoted to focusing on fewer scalable, high-impact use cases.
In their โ€œthousand flowersโ€ strategy J&J seeded 900+ GenAI use cases. Using clear metrics they found that 10โ€“15% of these drove 80% of the value, and pivoted to focusing on fewer scalable, high-impact use cases.
In my work with boards and exec teams one of the pointed questions is always the degree of focus in AI initiatives. Johnson & Johnson's divergent-convergent strategy is highly instructive. Some commentators have suggested that this means the use case proliferation was a mistake. J&J's CIO doesn't see it like that. "You had to take an iterative approach to say, โ€˜Where are these technologies useful and where are they not?โ€™... We had the right plan three years ago, but we matured our plan based on three years of understanding,โ€ Leaders cannot know in advance where the value will emerge. The challenge is to select the right scope of experimenation before selecting focus use cases. Another shift was from centralized AI by a board governance to function-specific ownership such as commercial, R&D, and supply chain, enabling better prioritization and faster iteration. Again, these models suit different phases of the AI adoption journey. Most organizations are far earlier than J&J, which has strong maturity. On metrics: "The company is tracking progress in three buckets: first, the ability to successfully deploy and implement use cases; second, how widely they are adopted; and third, the extent to which they deliver on business outcomes." I strongly suspect that they are not using a "win rate" on their use case success. There are similarities to VC portfolios, where a few big wins make all the investments worthwhile. | 12 comments on LinkedIn
ยทlinkedin.comยท
In their โ€œthousand flowersโ€ strategy J&J seeded 900+ GenAI use cases. Using clear metrics they found that 10โ€“15% of these drove 80% of the value, and pivoted to focusing on fewer scalable, high-impact use cases.
3.000 KI-Assistenten integriert in alle Teams. Das ist die KI-Reise vonโ€ฆ | Felix Schlenther | 12 Kommentare
3.000 KI-Assistenten integriert in alle Teams. Das ist die KI-Reise vonโ€ฆ | Felix Schlenther | 12 Kommentare
3.000 KI-Assistenten integriert in alle Teams. Das ist die KI-Reise von Moderna: โ€œItโ€™s hard to conveyโ€”within the hypeโ€”how much AI is changing things and how much Moderna is using it across the boardโ€ Dieses Zitat von Wade Davis, Modernas Head of Digital for Business, zeigt sehr schรถn wie schwer der allumfassende Wandel von KI zu beschreiben ist. Es sind eben nicht 2 - 3 Use Cases ein ein paar Bereichen. Viel mehr geht es um eine Verรคnderung der Denk- und Arbeitsweise. Wรคhrend viele Unternehmen noch zรถgern, hat Moderna bereits konkrete Schritte unternommen, um KI strategisch zu implementieren: 1. Zusammenlegung von HR und IT unter einer Fรผhrung 2. Systematische Analyse aller Arbeitsprozesse 3. Klare Entscheidung: Was macht Mensch & Maschine? 4. Entwicklung von 3.000 spezialisierten KI-Assistenten 5. Integration dieser Assistenten in komplexe Workflows Der taktische Ansatz dahinter ist bemerkenswert: โ†ณ Nicht einzelne KI-Projekte, sondern eine umfassende Transformation โ†ณ Keine isolierten Tools, sondern vernetzte Systeme โ†ณ Kein Fokus auf Stellenabbau, sondern auf Neugestaltung der Arbeit KI-Integration ist keine einmalige Initiative, sondern ein fortlaufender Prozess der Organisationsentwicklung. Moderna zeigt, dass der Erfolg nicht von einzelnen Tools abhรคngt, sondern von der strategischen Neugestaltung der Arbeit selbst. Genau das ist der Weg, den es zu gehen gilt. | 12 Kommentare auf LinkedIn
ยทlinkedin.comยท
3.000 KI-Assistenten integriert in alle Teams. Das ist die KI-Reise vonโ€ฆ | Felix Schlenther | 12 Kommentare
With more than 260,000 registrations, Google actually broke the Guinness World Records ๐Ÿ† title for largest attendance at a virtual AI conference in one week.
With more than 260,000 registrations, Google actually broke the Guinness World Records ๐Ÿ† title for largest attendance at a virtual AI conference in one week.
(I didn't even know that was a thing! ๐Ÿ™ƒ ) Not able to make attend? Here is everything that was covered from theory to application is now available for free... โžก๏ธ Day 1: Foundational Models & Prompt Engineering https://lnkd.in/d-_w3gXj โžก๏ธ Day 2: Embeddings & Vector Stores / Databases https://lnkd.in/dkmfDUcp โžก๏ธ Day 3: Generative AI Agents https://lnkd.in/dd3Zd2-F โžก๏ธ Day 4: Domain-Specific LLMs https://lnkd.in/d6Z39yqt โžก๏ธ Day 5: MLOps for Generative AI https://lnkd.in/dcXCTPVF And, be sure to check out the winners of the course's capstone project: building tools from Generative AI (classroom assistants, schedulers, mock interviewers and more.) https://lnkd.in/dPsXnrct Interested in putting all of those newly-developed AI skills to use? Here are some of the latest job openings here at Google: http://google.com/careers. Hope to see you around! ๐Ÿ˜Š #google #lifeatgoogle #training #ai #education | 21 comments on LinkedIn
ยทlinkedin.comยท
With more than 260,000 registrations, Google actually broke the Guinness World Records ๐Ÿ† title for largest attendance at a virtual AI conference in one week.
I was interviewed in today's The Wall Street Journal on the impact of AI agents on customer behavior - here's how I believe our lives are about to change:
I was interviewed in today's The Wall Street Journal on the impact of AI agents on customer behavior - here's how I believe our lives are about to change:
I was interviewed in today's The Wall Street Journal on the impact of AI agents on customer behavior - here's how I believe our lives are about to change: ( โฌ‡๏ธ From the article by the great Steve Rosenbush โฌ‡๏ธ ) There is a flywheel effect at work here. The AI agent has access to an enormous amount of data about users that makes it possible to tailor recommendations, information, and insights to their needs. And once they reside in a messaging app, they can create a continuing presence in the userโ€™s life, just like a person would. โ€œOnce an AI knows you and remembers your history, it stops feeling like a tool and starts to feel like a companion,โ€ saysย Conor Grennan, chief AI architect at New York University Stern School of Business. โ€œIt starts to blur the line between an AI brand ambassador and just a friend who shares your taste.โ€" โฌ†๏ธ End of quote โฌ†๏ธ . The wild part of all this to me is that agents are coming to WhatsApp, where we hang out. It shows us a ton about Meta's strategy: My thoughts: WhatsApp already hosts most of our everyday conversations, so when a brand drops in an AI agent that greets me like the barista who knows my order, it doesnโ€™t feel like marketingโ€”it feels like service. Whatโ€™s new is the compounding effect: every helpful, context-aware response deposits a little โ€˜trust capitalโ€™ in the relationship bank. Those micro-interactions can become a moat for a brand by helping establish lasting customer loyalty. So: Where do you see this all going? +++++++++++++++++ UPSKILL YOUR ORGANIZATION: When your organization is ready to create an AI-powered cultureโ€”not just add toolsโ€”AI Mindset would love to help. We drive behavioral transformation at scale through a powerful new digital course and enterprise partnership. DM me, or check out our website. | 56 comments on LinkedIn
โ€œOnce an AI knows you and remembers your history, it stops feeling like a tool and starts to feel like a companion,โ€ saysย Conor Grennan, chief AI architect at New York University Stern School of Business. โ€œIt starts to blur the line between an AI brand ambassador and just a friend who shares your taste.โ€"
ยทlinkedin.comยท
I was interviewed in today's The Wall Street Journal on the impact of AI agents on customer behavior - here's how I believe our lives are about to change:
๐—ฅ๐—ฒ๐˜๐˜‚๐—ฟ๐—ป ๐—ผ๐—ป ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ: ๐—œ๐—ป๐˜ƒ๐—ฒ๐˜€๐˜๐—ถ๐˜๐—ถ๐—ผ๐—ป๐—ฒ๐—ป ๐—ถ๐—ป ๐—ด๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ž๐—œ ๐—ฟ๐—ฒ๐—ฐ๐—ต๐—ป๐—ฒ๐—ป ๐˜€๐—ถ๐—ฐ๐—ต ๐—บ๐—ฒ๐—ถ๐˜€๐˜. ๐—ฉ๐—ถ๐—ฒ๐—น๐—ฒ๐˜€ ๐—ต๐—ฎฬˆ๐—ป๐—ด๐˜ ๐˜ƒ๐—ผ๐—ป ๐—ฑ๐—ฒ๐—ฟ ๐—ž๐—œ-๐—˜๐—ฟ๐—ณ๐—ฎ๐—ต๐—ฟ๐˜‚๐—ป๐—ด ๐—ฑ๐—ฒ๐—ฟ ๐—™๐˜‚ฬˆ๐—ต๐—ฟ๐˜‚๐—ป๐—ด๐˜€๐—ธ๐—ฟ๐—ฎฬˆ๐—ณ๐˜๐—ฒ ๐—ฎ๐—ฏ
๐—ฅ๐—ฒ๐˜๐˜‚๐—ฟ๐—ป ๐—ผ๐—ป ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ: ๐—œ๐—ป๐˜ƒ๐—ฒ๐˜€๐˜๐—ถ๐˜๐—ถ๐—ผ๐—ป๐—ฒ๐—ป ๐—ถ๐—ป ๐—ด๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ž๐—œ ๐—ฟ๐—ฒ๐—ฐ๐—ต๐—ป๐—ฒ๐—ป ๐˜€๐—ถ๐—ฐ๐—ต ๐—บ๐—ฒ๐—ถ๐˜€๐˜. ๐—ฉ๐—ถ๐—ฒ๐—น๐—ฒ๐˜€ ๐—ต๐—ฎฬˆ๐—ป๐—ด๐˜ ๐˜ƒ๐—ผ๐—ป ๐—ฑ๐—ฒ๐—ฟ ๐—ž๐—œ-๐—˜๐—ฟ๐—ณ๐—ฎ๐—ต๐—ฟ๐˜‚๐—ป๐—ด ๐—ฑ๐—ฒ๐—ฟ ๐—™๐˜‚ฬˆ๐—ต๐—ฟ๐˜‚๐—ป๐—ด๐˜€๐—ธ๐—ฟ๐—ฎฬˆ๐—ณ๐˜๐—ฒ ๐—ฎ๐—ฏ
Eine empirische Studie zeigt: Der wirtschaftliche Nutzen der generativen KI wird von Fรผhrungskrรคften mit praktischer Erfahrung deutlich positiver bewertet als von solchen ohne. Wรคhrend 64 Prozent der Erfahrenen von einer schnellen Amortisation ausgehen, glauben dies nur 35 Prozent der Unerfahrenen. Die Wirtschaftlichkeit hรคngt stark vom Betriebsmodell, der Nutzungstiefe und den unternehmensspezifischen Bedingungen ab. Wer GenAI gezielt einsetzt, steigert Produktivitรคt, Innovationskraft und Arbeitgeberattraktivitรคt โ€“ ein realer betriebswirtschaftlicher Vorteil, schreibt Peter Buxmann in seinem Gastbeitrag fรผr F.A.Z. PRO Digitalwirtschaft. ๐—ช๐—ฒ๐—ถ๐˜๐—ฒ๐—ฟ๐—น๐—ฒ๐˜€๐—ฒ๐—ป: โ–ถ๏ธŽ https://lnkd.in/e3faARTd Der Text stammt aus unserem Digitalwirtschaft-Newsletter zur digitalen ร–konomie. Der Newsletter wird jeden Mittwoch um 8 Uhr an 230.000 Abonnenten versendet und erklรคrt die relevanten Digitalthemen der Woche, aufgeteilt auf die Themenbereiche Kรผnstliche Intelligenz, Zukunft der Arbeit, Digitale Transformation, Plattformen und Digitale Mobilitรคt. Interessenten kรถnnen den Newsletter zwei Monate ๐—ธ๐—ผ๐˜€๐˜๐—ฒ๐—ป๐—น๐—ผ๐˜€ testen. โ–ถ๏ธ https://lnkd.in/eY_4zwbr Frankfurter Allgemeine Zeitung | 13 Kommentare auf LinkedIn
ยทlinkedin.comยท
๐—ฅ๐—ฒ๐˜๐˜‚๐—ฟ๐—ป ๐—ผ๐—ป ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ: ๐—œ๐—ป๐˜ƒ๐—ฒ๐˜€๐˜๐—ถ๐˜๐—ถ๐—ผ๐—ป๐—ฒ๐—ป ๐—ถ๐—ป ๐—ด๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ž๐—œ ๐—ฟ๐—ฒ๐—ฐ๐—ต๐—ป๐—ฒ๐—ป ๐˜€๐—ถ๐—ฐ๐—ต ๐—บ๐—ฒ๐—ถ๐˜€๐˜. ๐—ฉ๐—ถ๐—ฒ๐—น๐—ฒ๐˜€ ๐—ต๐—ฎฬˆ๐—ป๐—ด๐˜ ๐˜ƒ๐—ผ๐—ป ๐—ฑ๐—ฒ๐—ฟ ๐—ž๐—œ-๐—˜๐—ฟ๐—ณ๐—ฎ๐—ต๐—ฟ๐˜‚๐—ป๐—ด ๐—ฑ๐—ฒ๐—ฟ ๐—™๐˜‚ฬˆ๐—ต๐—ฟ๐˜‚๐—ป๐—ด๐˜€๐—ธ๐—ฟ๐—ฎฬˆ๐—ณ๐˜๐—ฒ ๐—ฎ๐—ฏ