Archive ‘How to AI’ (most recent to oldest) Delve, and the many words to ban on ChatGPT. (soon) From Youtube to your own AI. (the last one) Your ChatGPT prompt is too long. Remove em-dashes (and more). How to stop receiving the same ChatGPT answer. The new ChatGPT Atlas is live. Is it any good...
What happens when learners meet AI?
Think of skill development as a road from beginner to expert. You normally start with basic practice, work through tough problems, reflect on what's working, and eventually reach the point where you can handle anything that comes up.
Now AI has entered this picture. Depending on how we use it, we end up on completely different roads.
Use AI too early and you risk never-skilling. You skip the fundamentals and never develop real capability.
Hand over too much and you risk de-skilling. Abilities you once had start to fade.
Copy AI outputs without thinking and you risk mis-skilling. You learn the wrong lessons and build on faulty foundations.
But there's another path. Use AI while staying critical. Question its outputs. Think through the logic. Verify the answers. This is AI-enhanced adaptive practice. AI becomes a sparring partner that helps you learn faster without replacing your own reasoning.
The difference comes down to one thing: who's in control.
The people who'll succeed with AI aren't avoiding it or surrendering to it completely. They're the ones who keep thinking while using AI to compress learning cycles and test ideas faster.
AI shouldn't replace your thinking. It should make your thinking better.
The question isn't whether to use AI when learning. It's whether you're driving or just sitting in the passenger seat.
How are you seeing this play out in your work?
✍ Raja-Elie Abdulnour, Brian Gin, Christy Boscardin. Educational Strategies for Clinical Supervision of Artificial Intelligence Use. N Engl J Med. 2025;393(8):786-797. DOI: 10.1056/NEJMra2503232 | 10 comments on LinkedIn
A lot of firms - virtually all firms now - are shaping their AI strategy. Or, better, they’re adapting their strategy in light of the new capabilities we have and will have, thanks to AI.
But people have reacted to genrative AI so differently. Some have embraced it with gusto. Many have shrunk away from it. Thre vast majority of AI experimentation and usage still happens outside of work (ChatGPT has 800m weekly mostly-consumer users now).
Most firms don’t have a very good idea of where the individuals and teams that make up their workforce are.
Well, a 2x2 matrix almost always helps - so simple, so illuminating. It’s my favourite mental model.
In this situation, adoption and capability are two pertinent axes to think about this. It gives a sense of where there’s overconfidence, underconfidence and appropriate confidence. And what actions you might take for populations in each of the quadrants.
This enables you to better serve your people, and be better served by them.
If you’re interested in a 30-question survey which generates the data behind each axis and forms part of and builds on my AI in the Wild use case research, send me a message.
♻️Please REPOST if people you’re connected to may like to be updated on how AI is being used, out in the Wild.
#aiinthewild
I learned AI Agents for absolutely free, you can do it too!
I learned AI Agents for absolutely free, you can do it too!
AND... the best part is I got to learn from industry experts
DeepLearning.AI has done a great job in making these courses.
1. Event-Driven Agentic Document Workflows with LlamaIndex
- https://lnkd.in/d7vJEH4H
2. Long-Term Agentic Memory with LangGraph (LangChain)
- https://lnkd.in/dKJ-B3ks
3. Build Apps with Windsurf's AI Coding Agents (Codeium)
- https://lnkd.in/dTqjjt4Q
4. Building AI Applications with Haystack (by deepset)
- https://lnkd.in/d7WnTvTr
5. Improving Accuracy of LLM Applications (Lamini)
- https://lnkd.in/dcJvY6kg
6. Evaluating AI Agents (Arize AI)
- https://lnkd.in/dvTNKSaq
_______________
♻️ Repost it to help others.
_______________
If you like this, and want more AI resources, images, tutorials, and tools, join Superhuman, my daily AI newsletter with 1M+ subs now: https://lnkd.in/dXQ9-B9A | 55 comments on LinkedIn
AI will find its way into schools whether we like it or not. The danger lies in ignoring it; that’s how ‘workslop’ takes root.
‘We define workslop as AI generated work content that masquerades as good work, but lacks the substance to meaningfully advance a given task.’
So begins a great piece in the Harvard Business Review which has coined a new term referring to poor AI practices which are developing: employees are producing sloppy work with AI and actually creating more work down the line for the person they pass the ‘workslop’ onto.
The article offers some clear pointers on how organisations can move on to better AI practice, summed up in the conclusion:
‘Leaders will do best to model thoughtful AI use that has purpose and intention. Set clear guardrails for your teams around norms and acceptable use. Frame AI as a collaborative tool, not a shortcut. Embody a pilot mindset, with high agency and optimism, using AI to accelerate specific outcomes with specific usage. And uphold the same standards of excellence for work done by bionic human-AI duos as by humans alone.’
These lessons are just as applicable to schools as to businesses. The key difference is that we not only need leaders to model best practice, but teachers to help students understand what this looks like. It’s vital we take active steps now to shape habits: AI can be a force for innovation and amplify what’s best in our schools, or it can drive ‘workslop’ in staff and students. Surely the choice is a no brainer?
(Link to piece in comments via post on this from David Monis-Weston)
200+ hours of AI tutorials later, I found the 8 that actually matter:
1️⃣ LLM Introduction (Skip if you know transformers)
→ https://lnkd.in/g9r3Q3-2
Finally explained attention without the PhD
2️⃣ LLMs from Scratch (Reality check)
→ https://lnkd.in/gbpYBzeW
Built one. Now I know why we use APIs.
3️⃣ Stanford's Agent Overview (Academic flex)
→ https://lnkd.in/gngXNJUc
Good theory. Zero production code.
4️⃣ Building & Evaluating Agents (Where it gets real)
→ https://lnkd.in/gUm-JR5N
First video that mentioned testing. Imagine that.
5️⃣ Building Effective Agents (The one that matters)
→ https://lnkd.in/gnMXPeym
Watch this 3x. Everything else is noise.
6️⃣ Agents with MCP (Anthropic's gift)
→ https://lnkd.in/gbYGrvuk
This protocol changes the entire game
7️⃣ Agent from Scratch (Pain = learning)
→ https://lnkd.in/gDgh354a
No frameworks. Just tears and understanding.
8️⃣ Philo Agents (Production reality)
→ https://lnkd.in/gvNnyZJy
What nobody else shows you
These 8 videos = Everything you actually need
Which tutorial finally made agents click for you?
♻️ Repost for that friend who keeps saying 'I'll learn AI agents next month' | 24 comments on LinkedIn
Etablieren Sie Infinite Learning als eine Art unbegrenztes Lernens mit KI in Ihrem Unternehmen | LinkedIn Learning
Dieser LinkedIn Learning-Kurs hilft Ihnen dabei, die besten Einsatzmöglichkeiten mit KI zu erkunden, um Infinite Learning und Infinite Development zu etablieren. Durch den Kurs führt Sie Jan Foelsing, Autor des Buchs »New Work braucht New Learning«, Tech-Experte und Tool-Nerd, der Unternehmen und Teams auf dem Weg zu einer wirksameren Lernkultur, New Learning und vor allem dem sinnvollen Einsatz von KI begleitet.
Microsoft feuert 10.000 Menschen und trainiert gleichzeitig 15.000 "AI Specialists". Das ist nicht Stellenabbau – das ist Kompetenz-Tsunami.
Die Zahlen sind brutal:
62% aller Bürojobs verschwinden bis 2030 (McKinsey AI Report 2024)
Gleichzeitig entstehen 89% neue Job-Kategorien
Problem: 91% der Arbeitnehmer haben keine AI-Skills
Ein Personalvorstand sagte mir gestern: "Ich kann meinen Mitarbeitern nicht erklären, dass ihre 20-jährige Erfahrung plötzlich wertlos ist. Letzte Woche hat ne KI die 3-Tage-Arbeit unserer besten Buchhalterin in wenigen Minuten gemacht. Fehlerfrei."
Wir diskutieren über AI-Ethik, während AI unsere Jobs übernimmt. Unternehmen suchen nicht mehr erfahrene Manager – sondern Transformations-Leader.
"Ich brauche jemanden, der 500 Menschen erklärt, warum ihre Arbeit bald ein Algorithmus macht."
Die härteste Frage: Wie führt man Menschen durch eine Revolution, die sie überflüssig macht?
Die besten Führungskräfte werden nicht AI-Experten – sie werden Menschlichkeits-Experten.
Wie bereitet ihr euch auf den AI-Jobwandel vor?
Quellen:
McKinsey Future of Work in the Age of AI 2024
Microsoft Work Trend Index 2024
#AI #ArtificialIntelligence #Jobs #Transformation #Leadership #Microsoft #ChatGPT #FutureOfWork #ExecutiveSearch #Automation #Reskilling #StantonChase| 105 Kommentare auf LinkedIn
OpenAI 𝗹𝗮𝘂𝗻𝗰𝗵𝗲𝗱 𝗮𝗻 𝗲𝗻𝘁𝗶𝗿𝗲 𝗔𝗰𝗮𝗱𝗲𝗺𝘆 𝘁𝗼 𝘁𝗲𝗮𝗰𝗵 𝘆𝗼𝘂 𝗔𝗜 𝗳𝗼𝗿 𝗳𝗿𝗲𝗲 𝗮𝗻𝗱 𝗮𝗹𝗺𝗼𝘀𝘁 𝗻𝗼𝗯𝗼𝗱𝘆 𝗸𝗻𝗼𝘄𝘀!
It’s a beginner-friendly, self-paced platform designed to teach anyone — students, teachers, parents, or professionals with zero technical background — how to actually use AI.
𝗛𝗲𝗿𝗲 𝗮𝗿𝗲 𝘀𝗼𝗺𝗲 𝗼𝗳 𝘁𝗵𝗲 𝘁𝗵𝗶𝗻𝗴𝘀 𝘆𝗼𝘂’𝗹𝗹 𝗳𝗶𝗻𝗱 𝗶𝗻𝘀𝗶𝗱𝗲 𝘁𝗵𝗲 𝗔𝗰𝗮𝗱𝗲𝗺𝘆:
→ How ChatGPT works (broken down simply)
→ Real-world examples for daily life
→ Prompt writing, AI ethics & responsible use
→ Tailored tracks for educators, small businesses & learners
→ Hands-on tutorials directly in ChatGPT
This is practical AI education — accessible to everyone, and completely free. The ability to use AI effectively is quickly becoming a core skill. Not just for engineers, but for every profession. I consider initiatives like this as an important step toward closing the AI literacy gap and ensuring that the future of AI is shaped by many, not just a few.
Explore it here: https://academy.openai.com
𝗣.𝗦. 𝗜 𝗿𝗲𝗰𝗲𝗻𝘁𝗹𝘆 𝗹𝗮𝘂𝗻𝗰𝗵𝗲𝗱 𝗮 𝗻𝗲𝘄𝘀𝗹𝗲𝘁𝘁𝗲𝗿 𝘄𝗵𝗲𝗿𝗲 𝗜 𝘄𝗿𝗶𝘁𝗲 𝗮𝗯𝗼𝘂𝘁 𝗔𝗜 𝗮𝗴𝗲𝗻𝘁𝘀, 𝗲𝗺𝗲𝗿𝗴𝗶𝗻𝗴 𝘄𝗼𝗿𝗸𝗳𝗹𝗼𝘄𝘀, 𝗮𝗻𝗱 𝗵𝗼𝘄 𝘁𝗼 𝘀𝘁𝗮𝘆 𝗮𝗵𝗲𝗮𝗱 𝘄𝗵𝗶𝗹𝗲 𝗼𝘁𝗵𝗲𝗿𝘀 𝘄𝗮𝘁𝗰𝗵 𝗳𝗿𝗼𝗺 𝘁𝗵𝗲 𝘀𝗶𝗱𝗲𝗹𝗶𝗻𝗲𝘀. 𝗜𝘁’𝘀 𝗳𝗿𝗲𝗲, 𝗮𝗻𝗱 𝘆𝗼𝘂 𝗰𝗮𝗻 𝘀𝘂𝗯𝘀𝗰𝗿𝗶𝗯𝗲 𝗵𝗲𝗿𝗲: https://lnkd.in/dbf74Y9E | 32 comments on LinkedIn
Berufswahl im Zeitalter der lernenden Maschinen – Offener Brief an meine Nichte (Abi-Jahrgang 2025)
Berufswahl im Zeitalter der lernenden Maschinen – Offener Brief an meine Nichte (Abi-Jahrgang 2025)
Liebe Anna,
als du mich fragtest, ob „Informatik, Medienwissenschaft oder Politik“ noch zukunftssicher sind, merkte ich, wie löchrig die alte Landkarte der Arbeit geworden ist. Code wird von KI vervollständigt, Diagnosen von Algorithmen unterstützt, Routineverträge von Bots geprüft. Laut Weltwirtschaftsforum wird bis 2030 fast jede zweite Kompetenz umgeschrieben. Was also studieren?
Meine Empfehlung: Drei Felder, die weniger vom Titel als vom Skill-Mix leben. Warum? Weil sie Eigenschaften bieten, die KI kaum kopieren kann: direkten Menschenkontakt, interdisziplinäres Denken und sinnliche Materialerfahrung. Sie bilden zusammen einen „Human Moat“ – einen Schutzwall gegen reine Automatisierung.
1 | HEALTH & HUMAN SERVICES – BERUFE MIT EMPATHIE-FAKTOR
Das ist erwartbar: Pflege, Sozialarbeit, Therapie oder Pädagogik bleiben knapp, weil Demografie und Krisen Resilienz verlangen.
Typische Rollen: Pflegefachfrau+, Physician Assistant, Tele-Coach Mental Health.
Schlüssel-Skills: evidenzbasierte Pflege, interkulturelle Kommunikation, Basiswissen Medizinrecht und Datenschutz.
2 | TWIN-TRANSITION CAREERS – KLIMA × TECHNOLOGIE
Smarte Mash-Ups: Unternehmen brauchen Talente, die CO₂-Reduktion mit Datenkompetenz verbinden.
Typische Rollen: Nachhaltigkeits-Data-Analyst, Circular-Economy-Ingenieurin, KI-Policy-Analyst, Energy-Systems-Modeler.
Schlüssel-Skills: Life-Cycle-Assessment, Python/R, EU-Regulatorik (CSRD, AI Act), Systemdenken.
3 | CRAFT & EXPERIENCE DESIGN – WERT DES EINZIGARTIGEN
Je perfekter Massenware KI-optimiert ist, desto höher steigt der Wert des Nicht-Skalierbaren.
Typische Rollen: Produktdesigner*in für Bio-Materialien, Restaurator, Schreinerin mit CNC-Know-how, UX-Designer für phygitale Erlebnisse.
Schlüssel-Skills: Materialkunde, CAD/CAM & 3-D-Druck, Storytelling, Customer-Journey-Mapping.
Das ist natürlich nur ein Ausschnitt. Aber ich denke, die Muster dahinter sind klar, um es selbst weiterzudenken.
WAS VERSCHWINDET?
Alles, was rein repetitiv ist: Standard-Reporting, einfache Software-Tests, seitenlange Vertragsprüfungen. Die Maschine erledigt es schneller und billiger – doch jemand muss die Systeme entwerfen, mit Daten füttern und ethisch beaufsichtigen.
MEIN RAT IN DREI SÄTZEN
>> Suche kein Joblabel, sondern ein Problem, das dich elektrisiert. <<
Kombiniere digitale Grundfitness, empathische Kommunikation und moralischen Kompass. Dann arbeitest du nicht gegen Maschinen, sondern mit ihnen – und kannst dir jederzeit einen neuen Beruf erfinden.
Vielleicht startest du als Pflege-Informatikerin, wirst später KI-Ethikerin und eröffnest irgendwann eine Bäckerei, in der Roboter den Teig kneten, während du den Sauerteig fütterst und Kund:innen berätst. Zukunftssicherheit entsteht nicht aus einem Studium, sondern aus lebenslanger Lernlust. Die Welt bleibt turbulent, doch wer Richtung Sinn steuert, hat immer Rückenwind.
Dein Onkel
Stefan | 59 Kommentare auf LinkedIn
𝙃𝙖𝙗𝙩 𝙞𝙝𝙧 𝙨𝙘𝙝𝙤𝙣 𝙫𝙤𝙣 𝘼𝙄 𝙇𝙚𝙖𝙥 2025 𝙜𝙚𝙝ö𝙧𝙩? AI Leap ist eine landesweite KI-Bildungsinitiative aus #Estland, die 20.000 Schüler:innen der 10. und 11. Klasse sowie 3.000 Lehrkräften einen kostenlosen Zugang zu KI-basierten Lernwerkzeugen und entsprechender Schulung gewährt.
𝙃𝙖𝙗𝙩 𝙞𝙝𝙧 𝙨𝙘𝙝𝙤𝙣 𝙫𝙤𝙣 𝘼𝙄 𝙇𝙚𝙖𝙥 2025 𝙜𝙚𝙝ö𝙧𝙩?
AI Leap ist eine landesweite KI-Bildungsinitiative aus #Estland, die 20.000 Schüler:innen der 10. und 11. Klasse sowie 3.000 Lehrkräften einen kostenlosen Zugang zu KI-basierten Lernwerkzeugen und entsprechender Schulung gewährt.
Bereits letztes Jahr war ich von der politischen Haltung und konsequenten Umsetzung Estlands fasziniert, als ich u.a. mit der Botschafterin der Republik Estland, Marika Linntam, auf dem Panel der IHK Berlin über die Arbeitswelt der Zukunft diskutieren durfte.
AI Leap ist Estlands Antwort auf die vielseitigen Herausforderungen im Bildungsbereich und fördert frühzeitig notwendige Schlüsselkompetenzen, die für den Arbeitsmarkt der Zukunft unerlässlich sind. Estland hat erkannt, dass ein professioneller Umgang mit KI-Technologien der wichtigste Wettbewerbsfaktor der Zukunft sein wird.
Das war auch eine meiner insgesamt 4 Thesen, die ich vorab in einer Keynote vorstellen durfte, den kompletten Vortrag findet ihr hier: https://lnkd.in/dTdXMGuA
🅰🅱🅴🆁:
🎯 WO STEHEN WIR IN DEUTSCHLAND❓
🎯 Wie können wir trotz Bildungsförderalismus schnell wirksam werden❓
Spannende Fragen für unsere neue Regierung v.a. mit Blick auf das Bundesministerium für Digitales und Staatsmodernisierung unter Leitung von Dr. Karsten Wildberger, das die #Digitalisierung und die #KI #KünstlicheIntelligenz in Deutschland auf ein nächstes Level heben will.
Was mir gefällt ist die Aufbruchstimmung und ein #WirMachen. Ich hoffe, dass es gelingt, etwas zu bewegen und die entsprechenden Stakeholder einzubinden. Ich bin gerne dabei, denn da gibt es noch VIEL ZU TUN.
Estland macht es vor! Es ist zwar viel kleiner als Deutschland, dennoch können wir viel von Estland (und anderen Ländern) lernen v.a. wenn wir in globale Kooperationen und in Public-Private-Partnership Modelle investieren.
Quelle: https://lnkd.in/eUzXiSza
#FutureOfWork #FutureSkills #SmartLearning
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
🔔 Du möchtest mehr über die Arbeitswelt im Wandel zu erfahren? Let's connect!
💌 Du interessierst Dich für eine Zusammenarbeit? Schreib mir gerne!
𝗧𝗵𝗶𝘀 𝗶𝘀 𝗵𝗮𝗻𝗱𝘀 𝗱𝗼𝘄𝗻 𝗼𝗻𝗲 𝗼𝗳 𝘁𝗵𝗲 𝗕𝗘𝗦𝗧 𝘃𝗶𝘀𝘂𝗮𝗹𝗶𝘇𝗮𝘁𝗶𝗼𝗻 𝗼𝗳 𝗵𝗼𝘄 𝗟𝗟𝗠𝘀 𝗮𝗰𝘁𝘂𝗮𝗹𝗹𝘆 𝘄𝗼𝗿𝗸. ⬇️
𝘓𝘦𝘵'𝘴 𝘣𝘳𝘦𝘢𝘬 𝘪𝘵 𝘥𝘰𝘸𝘯:
𝗧𝗼𝗸𝗲𝗻𝗶𝘇𝗮𝘁𝗶𝗼𝗻 & 𝗘𝗺𝗯𝗲𝗱𝗱𝗶𝗻𝗴𝘀:
- Input text is broken into tokens (smaller chunks).
- Each token is mapped to a vector in high-dimensional space, where words with similar meanings cluster together.
𝗧𝗵𝗲 𝗔𝘁𝘁𝗲𝗻𝘁𝗶𝗼𝗻 𝗠𝗲𝗰𝗵𝗮𝗻𝗶𝘀𝗺 (𝗦𝗲𝗹𝗳-𝗔𝘁𝘁𝗲𝗻𝘁𝗶𝗼𝗻):
- Words influence each other based on context — ensuring "bank" in riverbank isn’t confused with financial bank.
- The Attention Block weighs relationships between words, refining their representations dynamically.
𝗙𝗲𝗲𝗱-𝗙𝗼𝗿𝘄𝗮𝗿𝗱 𝗟𝗮𝘆𝗲𝗿𝘀 (𝗗𝗲𝗲𝗽 𝗡𝗲𝘂𝗿𝗮𝗹 𝗡𝗲𝘁𝘄𝗼𝗿𝗸 𝗣𝗿𝗼𝗰𝗲𝘀𝘀𝗶𝗻𝗴)
- After attention, tokens pass through multiple feed-forward layers that refine meaning.
- Each layer learns deeper semantic relationships, improving predictions.
𝗜𝘁𝗲𝗿𝗮𝘁𝗶𝗼𝗻 & 𝗗𝗲𝗲𝗽 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴
- This process repeats through dozens or even hundreds of layers, adjusting token meanings iteratively.
- This is where the "deep" in deep learning comes in — layers upon layers of matrix multiplications and optimizations.
𝗣𝗿𝗲𝗱𝗶𝗰𝘁𝗶𝗼𝗻 & 𝗦𝗮𝗺𝗽𝗹𝗶𝗻𝗴
- The final vector representation is used to predict the next word as a probability distribution.
- The model samples from this distribution, generating text word by word.
𝗧𝗵𝗲𝘀𝗲 𝗺𝗲𝗰𝗵𝗮𝗻𝗶𝗰𝘀 𝗮𝗿𝗲 𝗮𝘁 𝘁𝗵𝗲 𝗰𝗼𝗿𝗲 𝗼𝗳 𝗮𝗹𝗹 𝗟𝗟𝗠𝘀 (𝗲.𝗴. 𝗖𝗵𝗮𝘁𝗚𝗣𝗧). 𝗜𝘁 𝗶𝘀 𝗰𝗿𝘂𝗰𝗶𝗮𝗹 𝘁𝗼 𝗵𝗮𝘃𝗲 𝗮 𝘀𝗼𝗹𝗶𝗱 𝘂𝗻𝗱𝗲𝗿𝘀𝘁𝗮𝗻𝗱𝗶𝗻𝗴 𝗵𝗼𝘄 𝘁𝗵𝗲𝘀𝗲 𝗺𝗲𝗰𝗵𝗮𝗻𝗶𝗰𝘀 𝘄𝗼𝗿𝗸 𝗶𝗳 𝘆𝗼𝘂 𝘄𝗮𝗻𝘁 𝘁𝗼 𝗯𝘂𝗶𝗹𝗱 𝘀𝗰𝗮𝗹𝗮𝗯𝗹𝗲, 𝗿𝗲𝘀𝗽𝗼𝗻𝘀𝗶𝗯𝗹𝗲 𝗔𝗜 𝘀𝗼𝗹𝘂𝘁𝗶𝗼𝗻𝘀.
Here is the full video from 3Blue1Brown with exaplantion. I highly recommend to read, watch and bookmark this for a further deep dive: https://lnkd.in/dAviqK_6
𝗜 𝗲𝘅𝗽𝗹𝗼𝗿𝗲 𝘁𝗵𝗲𝘀𝗲 𝗱𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁𝘀 — 𝗮𝗻𝗱 𝘄𝗵𝗮𝘁 𝘁𝗵𝗲𝘆 𝗺𝗲𝗮𝗻 𝗳𝗼𝗿 𝗿𝗲𝗮𝗹-𝘄𝗼𝗿𝗹𝗱 𝘂𝘀𝗲 𝗰𝗮𝘀𝗲𝘀 — 𝗶𝗻 𝗺𝘆 𝘄𝗲𝗲𝗸𝗹𝘆 𝗻𝗲𝘄𝘀𝗹𝗲𝘁𝘁𝗲𝗿. 𝗬𝗼𝘂 𝗰𝗮𝗻 𝘀𝘂𝗯𝘀𝗰𝗿𝗶𝗯𝗲 𝗵𝗲𝗿𝗲 𝗳𝗼𝗿 𝗳𝗿𝗲𝗲: https://lnkd.in/dbf74Y9E | 48 comments on LinkedIn
BOOM! Microsoft just dropped a FREE 18-episode series on Generative AI.
Ideal for people who are new to AI & wanna start learning.
Here are 5 episodes that stood out
𝗜𝘁 𝘄𝗶𝗹𝗹 𝘁𝗮𝗸𝗲 𝘆𝗼𝘂 𝗹𝗲𝘀𝘀 𝘁𝗵𝗮𝗻 𝟭.𝟱 𝗵𝗼𝘂𝗿𝘀 𝘁𝗼 𝘄𝗮𝘁𝗰𝗵 𝗮𝗹𝗹 𝘁𝗵𝗲𝘀𝗲:
👉 Introduction to Generative AI and LLMs
https://lnkd.in/dxds5CXY
👉 Exploring and Comparing Different LLMs
https://lnkd.in/dnu5sP68
👉 Understanding Prompt Engineering Fundamentals
https://lnkd.in/d8t56acG
👉 Building Low-Code AI Applications
https://lnkd.in/dKVXmdeK
👉 AI Agents – Introduces AI Agents, where LLMs can take actions via tools or frameworks.
https://lnkd.in/d8VKw7Ve
More resources are in the comments.
Repost this post to help others in your network.
| 91 comments on LinkedIn
BREAKING: Claude launches Education. Free learning is now much faster with AI:
1. Set clear learning goals
↳ Knowing what you want to learn makes it easier.
↳ Claude helps you define your path.
2. Provide context for your knowledge
↳ Understanding the bigger picture is key.
↳ Claude connects new ideas to what you already know.
3. Request detailed explanations
↳ Sometimes, you need more than a quick answer.
↳ Claude can dive deep into complex topics.
4. Get real-world examples
↳ Learning is better with practical applications.
↳ Claude shows how concepts work in the real world.
5. Practice writing and receive feedback
↳ Writing helps solidify your knowledge.
↳ Claude gives instant feedback to improve your skills.
6. Role-play for languages or coding
↳ Learning by doing is effective.
↳ Claude can simulate conversations or coding scenarios.
7. Fact-check surprising claims
↳ Misinformation is everywhere.
↳ Claude helps you verify facts and claims.
8. Take breaks and reflect on learning
↳ Reflection is vital for understanding.
↳ Claude reminds you to pause and think.
9. Keep a learning journal
↳ Tracking your progress is important.
↳ Claude can help you log your journey.
10. Iterate and refine understanding
↳ Learning is a process.
↳ Claude encourages you to improve your knowledge. | 246 comments on LinkedIn
Hugging Face 𝗷𝘂𝘀𝘁 𝗱𝗿𝗼𝗽𝗽𝗲𝗱 9 𝗙𝗥𝗘𝗘 𝗔𝗜 𝗰𝗼𝘂𝗿𝘀𝗲𝘀!
If you’re trying to level up or pivot into AI — this is pure gold.
𝗔𝗹𝗹 OPEN. 𝗔𝗹𝗹 FREE. 𝗔𝗹𝗹 expert thaugt.
Here’s what’s inside (with links): ⬇️
1. 𝗟𝗟𝗠 𝗖𝗼𝘂𝗿𝘀𝗲
Master large language models fast.
Train, fine-tune, deploy with Transformers.
→ https://lnkd.in/dcCMCs96
2. 𝗔𝗜 𝗔𝗴𝗲𝗻𝘁𝘀 𝗖𝗼𝘂𝗿𝘀𝗲
Build multi-step reasoning agents with LangChain + HuggingFace.
→ https://lnkd.in/dJD3QRuT
3. 𝗗𝗲𝗲𝗽 𝗥𝗟 𝗖𝗼𝘂𝗿𝘀𝗲
Teach AI to learn like a human.
Reward-based decision-making in real environments.
→ https://lnkd.in/d8JuRvn8
4. 𝗖𝗼𝗺𝗽𝘂𝘁𝗲𝗿 𝗩𝗶𝘀𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲
Image classification, segmentation, object detection — with HF models.
https://lnkd.in/dEH8Tx-v
5. 𝗔𝘂𝗱𝗶𝗼 𝗖𝗼𝘂𝗿𝘀𝗲
Turn sound into signal.
Voice recognition, music tagging, audio generation.
→ https://lnkd.in/dZtkA3sw
6. 𝗠𝗟 𝗳𝗼𝗿 𝗚𝗮𝗺𝗲𝘀 𝗖𝗼𝘂𝗿𝘀𝗲
AI-powered game design: NPCs, logic, procedural generation.
→ https://lnkd.in/d4RhU6pz
7. 𝗠𝗟 𝗳𝗼𝗿 3𝗗 𝗖𝗼𝘂𝗿𝘀𝗲
Work with point clouds, meshes, and 3D data in ML.
→ https://lnkd.in/dU8T8BPw
8. 𝗗𝗶𝗳𝗳𝘂𝘀𝗶𝗼𝗻 𝗠𝗼𝗱𝗲𝗹𝘀 𝗖𝗼𝘂𝗿𝘀𝗲
The tech behind DALL·E and Stable Diffusion.
Generate visuals from noise — step by step.
→ https://lnkd.in/dFwN_idt
9. 𝗢𝗽𝗲𝗻-𝗦𝗼𝘂𝗿𝗰𝗲 𝗔𝗜 𝗖𝗼𝗼𝗸𝗯𝗼𝗼𝗸
Not a course — a growing library of real-world AI notebooks.
Copy, remix, and build.
→ https://lnkd.in/dQ5BXvSz
There’s no excuse left. Save this. Study it. Build.
Share this with your network to help them level up! ♻️
Which one will you start with? | 16 comments on LinkedIn
With more than 260,000 registrations, Google actually broke the Guinness World Records 🏆 title for largest attendance at a virtual AI conference in one week.
(I didn't even know that was a thing! 🙃 ) Not able to make attend? Here is everything that was covered from theory to application is now available for free...
➡️ Day 1: Foundational Models & Prompt Engineering
https://lnkd.in/d-_w3gXj
➡️ Day 2: Embeddings & Vector Stores / Databases
https://lnkd.in/dkmfDUcp
➡️ Day 3: Generative AI Agents
https://lnkd.in/dd3Zd2-F
➡️ Day 4: Domain-Specific LLMs
https://lnkd.in/d6Z39yqt
➡️ Day 5: MLOps for Generative AI
https://lnkd.in/dcXCTPVF
And, be sure to check out the winners of the course's capstone project: building tools from Generative AI (classroom assistants, schedulers, mock interviewers and more.) https://lnkd.in/dPsXnrct
Interested in putting all of those newly-developed AI skills to use? Here are some of the latest job openings here at Google: http://google.com/careers. Hope to see you around! 😊
#google #lifeatgoogle #training #ai #education | 21 comments on LinkedIn
*NEW PAPER*: GenAI investments will only pay off if employees adopt the…
*NEW PAPER*: GenAI investments will only pay off if employees adopt the technology and learn to use it effectively. Feelings of psychological threats are common and they are going to be a major obstacle. GenAI deployment therefore needs to be accompanied by a careful talent management strategy.
In our new Trends in Cognitive Sciences article, we review the psychological threats that GenAI deployment can trigger in workers, focusing on three areas: competence, autonomy, and relatedness.
Moreover, we sketch different types of reactions that such feelings of threats can trigger. The figure below summarizes five coping strategies (both adaptive and maladaptive) for the three types of psychological threat.
Link to the article in comment (open access for 50 days). With Erik Hermann and Carey Morewedge
The Wharton School
Wharton AI & Analytics Initiative
Wharton Executive Education | 24 comments on LinkedIn
𝗢𝗽𝗲𝗻𝗔𝗜 𝗷𝘂𝘀𝘁 𝗹𝗮𝘂𝗻𝗰𝗵𝗲𝗱 𝘀𝗼𝗺𝗲𝘁𝗵𝗶𝗻𝗴 𝗕𝗜𝗚 — 𝗮𝗻𝗱 𝗯𝗮𝗿𝗲𝗹𝘆 𝗮𝗻𝘆𝗼𝗻𝗲 𝗶𝘀 𝘁𝗮𝗹𝗸𝗶𝗻𝗴 𝗮𝗯𝗼𝘂𝘁 𝗶𝘁!
Yesterday, I spent a few hours diving into the newly launched "𝗢𝗽𝗲𝗻𝗔𝗜 𝗔𝗰𝗮𝗱𝗲𝗺𝘆". And it's an absolute goldmine of FREE AI education, packed with tutorials, live workshops, labs and real-world case studies.
Whether you're just starting or already building with GPTs — there’s definitely something here for you. And it’s all 100% FREE and beginner-friendly tracks (no code needed). Here is some stuff to have an eye on:
𝗨𝗽𝗰𝗼𝗺𝗶𝗻𝗴 𝗪𝗲𝗯𝗶𝗻𝗮𝗿𝘀:
– Introduction to ChatGPT: https://lnkd.in/e4dgUbWj
– AI in Action: Uses for Work, Learning & Life: https://lnkd.in/efXpXY_9
𝗔𝗿𝗰𝗵𝗶𝘃𝗲𝗱 𝗪𝗲𝗯𝗶𝗻𝗮𝗿𝘀:
– ChatGPT 101: A Guide to Your Super Assistant: https://lnkd.in/e6RJMcEC
– ChatGPT 102: Using AI to Do Your Best Work: https://lnkd.in/eF4iQfFz
– Advanced Prompt Engineering: https://lnkd.in/eb9JGYkY
𝗖𝗵𝗮𝘁𝗚𝗣𝗧 𝗮𝘁 𝗪𝗼𝗿𝗸 𝗖𝗼𝗹𝗹𝗲𝗰𝘁𝗶𝗼𝗻:
– ChatGPT Search: https://lnkd.in/e8fRSkPT
– ChatGPT for Data Analysis: https://lnkd.in/ezssYnGk
– Introduction to GPTs: https://lnkd.in/eiUCDF9u
𝗖𝗵𝗮𝘁𝗚𝗣𝗧 𝗼𝗻 𝗖𝗮𝗺𝗽𝘂𝘀 𝗖𝗼𝗹𝗹𝗲𝗰𝘁𝗶𝗼𝗻:
– AI for Academic Success: https://lnkd.in/e9hPwRsF
– AI for Career Prep: Resumes & Interviews: https://lnkd.in/ezK62jzQ
𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗲𝗿 𝗕𝘂𝗶𝗹𝗱 𝗛𝗼𝘂𝗿𝘀 𝗖𝗼𝗹𝗹𝗲𝗰𝘁𝗶𝗼𝗻:
– Fine-Tuning: https://lnkd.in/e2iqWD7J
– Assistants & Agents: https://lnkd.in/em6FBu2Q
Link to the academy: https://lnkd.in/d8GK4sC4
Definitely very interesting to see that OpenAI is now also building their own learning ecosystem.
ENJOY! | 58 comments on LinkedIn
𝗧𝗼𝗽 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝘃𝗲 𝗔𝗜 𝗧𝗲𝗿𝗺𝘀 𝗬𝗼𝘂 𝗦𝗵𝗼𝘂𝗹𝗱 𝗞𝗻𝗼𝘄 — 𝗘𝘅𝗽𝗹𝗮𝗶𝗻𝗲𝗱 𝗦𝗶𝗺𝗽𝗹𝘆
𝟭. 𝗟𝗟𝗠 (𝗟𝗮𝗿𝗴𝗲 𝗟𝗮𝗻𝗴𝘂𝗮𝗴𝗲 𝗠𝗼𝗱𝗲𝗹)
→ Helps computers understand and write human-like text
→ Examples: GPT-4, Claude, Gemini
→ Used in: Chatbots, coding tools, content generation
𝟮. 𝗧𝗿𝗮𝗻𝘀𝗳𝗼𝗿𝗺𝗲𝗿𝘀
→ The tech behind all modern AI models
→ Let models understand meaning, context, and order of words
→ Examples: BERT, GPT
𝟯. 𝗣𝗿𝗼𝗺𝗽𝘁 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴
→ Writing better instructions to get better AI answers
→ Includes system prompts, step-by-step prompts, and safety rules
𝟰. 𝗙𝗶𝗻𝗲-𝗧𝘂𝗻𝗶𝗻𝗴
→ Training an AI model on your data
→ Helps tailor it for specific tasks like legal, medical, or financial use cases
𝟱. 𝗘𝗺𝗯𝗲𝗱𝗱𝗶𝗻𝗴𝘀
→ A way for AI to understand meaning and relationships between words or documents
→ Used in search engines and recommendation systems
𝟲. 𝗥𝗔𝗚 (𝗥𝗲𝘁𝗿𝗶𝗲𝘃𝗮𝗹-𝗔𝘂𝗴𝗺𝗲𝗻𝘁𝗲𝗱 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝗼𝗻)
→ Combines AI with a database or document store
→ Helps AI give more accurate, fact-based answers
𝟳. 𝗧𝗼𝗸𝗲𝗻𝘀
→ The chunks of text AI reads and writes
→ Managing them controls cost and performance
𝟴. 𝗛𝗮𝗹𝗹𝘂𝗰𝗶𝗻𝗮𝘁𝗶𝗼𝗻
→ When AI gives wrong or made-up answers
→ Can be fixed with fact-checking and better prompts
𝟵. 𝗭𝗲𝗿𝗼-𝗦𝗵𝗼𝘁 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴
→ When AI can perform a task without being trained on it
→ Saves time on training
𝟭𝟬. 𝗖𝗵𝗮𝗶𝗻-𝗼𝗳-𝗧𝗵𝗼𝘂𝗴𝗵𝘁
→ AI explains its answer step-by-step
→ Helps with complex reasoning tasks
𝟭𝟭. 𝗖𝗼𝗻𝘁𝗲𝘅𝘁 𝗪𝗶𝗻𝗱𝗼𝘄
→ The amount of info AI can see at once
→ Larger windows help with longer documents or conversations
𝟭𝟮. 𝗧𝗲𝗺𝗽𝗲𝗿𝗮𝘁𝘂𝗿𝗲
→ Controls how creative or predictable AI is
→ Lower values = more accurate; higher values = more creative
𝗪𝗵𝗮𝘁’𝘀 𝗖𝗼𝗺𝗶𝗻𝗴 𝗡𝗲𝘅𝘁?
→ Multimodal AI (text, images, audio together)
→ Smaller, faster models
→ Safer, ethical AI (Constitutional AI)
→ Agentic AI (autonomous, task-completing agents)
Knowing the terms is just step one — what really matters is how you 𝘶𝘴𝘦 them to build better solutions.
| 51 comments on LinkedIn
Die Ergebnisse einer Studie des Stifterverbands der deutschen Wissenschaft zeigen, dass Unternehmen das Potenzial von KI noch nicht ausreichend ausschöpfen - auch weil die dazu erforderlichen Kompetenzen in der Breite noch nicht verfügbar sind. Die Studie liefert ein einfaches Modell für KI-Kompeten
𝐖𝐚𝐬 𝐢𝐬𝐭 𝐣𝐞𝐭𝐳𝐭 𝐞𝐢𝐠𝐞𝐧𝐭𝐥𝐢𝐜𝐡 𝐀𝐈 𝐋𝐢𝐭𝐞𝐫𝐚𝐜𝐲? Ich dachte mir, ich starte eine kleine Serie mit wissenschaftlichen Veröffentlichungen
𝐖𝐚𝐬 𝐢𝐬𝐭 𝐣𝐞𝐭𝐳𝐭 𝐞𝐢𝐠𝐞𝐧𝐭𝐥𝐢𝐜𝐡 𝐀𝐈 𝐋𝐢𝐭𝐞𝐫𝐚𝐜𝐲? Ich dachte mir, ich starte eine kleine Serie mit wissenschaftlichen Veröffentlichungen… | 15 comments on LinkedIn
AI Prompting zu erlernen hat nie mehr Spaß gemacht mit Gandalf AI
🎮 Willkommen zu einem spannenden Einblick in die Welt der Gamification und KI! In diesem Video entdecken wir Gandalf von Lakera, ein aufregendes Spiel, das ...
Nvidia is now offering free AI courses No payment needed to learn from…
Nvidia is now offering free AI courses No payment needed to learn from the best. If you want to start off your January right, consider taking these 5 short… | 10 comments on LinkedIn
„Eine Befragung von mehr als 1.000 Führungskräften aus deutschen Unternehmen zeichnet ein klares Bild: 86 Prozent der Befragten sind der Meinung, dass ihr…
„Eine Befragung von mehr als 1.000 Führungskräften aus deutschen Unternehmen zeichnet ein klares Bild: 86 Prozent der Befragten sind der Meinung, dass ihr… | 11 comments on LinkedIn