Empirical antibiotic treatment for community-acquired pneumonia and accuracy for Legionella pneumophila, Mycoplasma pneumoniae, and Clamydophila pneumoniae: a descriptive cross-sectional study of adult patients in the emergency department - BMC Infectious Diseases
Background Many factors determine empirical antibiotic treatment of community-acquired pneumonia (CAP). We aimed to describe the empirical antibiotic treatment CAP patients with an acute hospital visit and to determine if the current treatment algorithm provided specific and sufficient coverage against Legionella pneumophila, Mycoplasma pneumoniae, and Clamydophila pneumoniae (LMC). Methods A descriptive cross-sectional, multicenter study of all adults with an acute hospital visit in the Region of Southern Denmark between January 2016 and March 2018 was performed. Using medical records, we retrospectively identified the empirical antibiotic treatment and the microbiological etiology for CAP patients. CAP patients who were prescribed antibiotics within 24 h of admission and with an identified bacterial pathogen were included. The prescribed empirical antibiotic treatment and its ability to provide specific and sufficient coverage against LMC pneumonia were determined. Results Of the 19,133 patients diagnosed with CAP, 1590 (8.3%) patients were included in this study. Piperacillin-tazobactam and Beta-lactamase sensitive penicillins were the most commonly prescribed empirical treatments, 515 (32%) and 388 (24%), respectively. Our analysis showed that 42 (37%, 95% CI: 28–47%) of 113 patients with LMC pneumonia were prescribed antibiotics with LMC coverage, and 42 (12%, 95% CI: 8–15%) of 364 patients prescribed antibiotics with LMC coverage had LMC pneumonia. Conclusion Piperacillin-tazobactam, a broad-spectrum antibiotic recommended for uncertain infectious focus, was the most frequent CAP treatment and prescribed to every third patient. In addition, the current empirical antibiotic treatment accuracy was low for LMC pneumonia. Therefore, future research should focus on faster diagnostic tools for identifying the infection focus and precise microbiological testing.