Entity resolution, the process of determining which digital descriptions correspond to the same real-world entities, is an important graph use case. It is also a crucial precursor to many graph data science projects. In this session, you will learn steps that the Neo4j professional services team has used in many entity resolution projects. The steps include designing a graph data model that highlights shared identifiers, standardizing the format of node properties, identifying outlier nodes that should be excluded from the matching process, using graph data science algorithms to identify duplicate entities, using string similarity to identify misspellings, and capturing the results of entity resolution in your graph.
Get certified with GraphAcademy: https://dev.neo4j.com/learngraph
Neo4j AuraDB https://dev.neo4j.com/auradb
Knowledge Graph Builder https://dev.neo4j.com/KGBuilder
Neo4j GenAI https://dev.neo4j.com/graphrag