GraphNews

#research #llm #LLM #AI
if you believe that LLMs need graphs to reason, you are right and now you have evidence: Claude answers questions by building and traversing a graph
if you believe that LLMs need graphs to reason, you are right and now you have evidence: Claude answers questions by building and traversing a graph
To all the knowledge graph enthusiasts who've felt for a while that "graphs are the way to go" when it comes to enabling "intelligence," it was interesting to read Anthropic's "Tracing the thoughts of a large language model" - if you believe that LLMs need graphs to reason, you are right and now you have evidence: Claude answers questions by building and traversing a graph (in latent space) before it translates it back to language: https://lnkd.in/eWFWwfN4 | 20 comments on LinkedIn
if you believe that LLMs need graphs to reason, you are right and now you have evidence: Claude answers questions by building and traversing a graph
·linkedin.com·
if you believe that LLMs need graphs to reason, you are right and now you have evidence: Claude answers questions by building and traversing a graph
What if your LLM is… a graph?
What if your LLM is… a graph?
What if your LLM is… a graph? A few days ago, Petar Veličković from Google DeepMind gave one of the most interesting and thought provoking conference I've seen in a while, "Large Language Models as Graph Neural Networks". Once you start seeing LLM as graph neural network, many structural oddities suddenly falls into place. For instance, OpenAI currently recommends to put the instructions at the top of a long prompt. Why is that so? Because due to the geometry of attention graphs, LLM are counter-intuitively biased in favors of the first tokens: they travel constinously through each generation steps, are internally repeated a lot and end up "over-squashing" the latter ones. Models then use a variety of internal metrics/transforms like softmax to moderate this bias and better ponderate distribution, but this is a late patch that cannot solve long time attention deficiencies, even more so for long context. The most interesting aspect of the conference from an applied perspective: graph/geometric representations directly affect accuracy and robustness. As the generated sequence grow and deal with sequences of complex reasoning steps, cannot build solid expert system when attention graphs have single point of failures. Or at least, without extrapolating this information in the first place and providing more detailed accuracy metrics. I do believe LLM explainability research is largely underexploited right now, despite being accordingly a key component of LLM devops in big labs. If anything, this is literal "prompt engineering", seeing models as nearly physical structure under stress and providing the right feedback loops to make them more reliable. | 30 comments on LinkedIn
What if your LLM is… a graph?
·linkedin.com·
What if your LLM is… a graph?
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning ... 👉 Why This Matters Most AI systems blend knowledge graphs (structured data) with large language models (flexible reasoning). But there’s a hidden variable: "how" you translate the graph into text for the AI. Researchers discovered that the formatting choice alone can swing performance by up to "17.5%" on reasoning tasks. Imagine solving 1 in 5 more problems correctly just by adjusting how you present data. 👉 What They Built KG-LLM-Bench is a new benchmark to test how language models reason with knowledge graphs. It includes five tasks: - Triple verification (“Does this fact exist?”) - Shortest path finding (“How are two concepts connected?”) - Aggregation (“How many entities meet X condition?”) - Multi-hop reasoning (“Which entities linked to A also have property B?”) - Global analysis (“Which node is most central?”) The team tested seven models (Claude, GPT-4o, Gemini, Llama, Nova) with five ways to “textualize” graphs, from simple edge lists to structured JSON and semantic web formats like RDF Turtle. 👉 Key Insights 1. Format matters more than assumed:   - Structured JSON and edge lists performed best overall, but results varied by task.   - For example, JSON excels at aggregation tasks (data is grouped by entity), while edge lists help identify central nodes (repeated mentions highlight connections). 2. Models don’t cheat: Replacing real entity names with fake ones (e.g., “France” → “Verdania”) caused only a 0.2% performance drop, proving models rely on context, not memorized knowledge. 3. Token efficiency:   - Edge lists used ~2,600 tokens vs. JSON-LD’s ~13,500. Shorter formats free up context space for complex reasoning.   - But concise ≠ always better: structured formats improved accuracy for tasks requiring grouped data. 4. Models struggle with directionality:   Counting outgoing edges (e.g., “Which countries does France border?”) is easier than incoming ones (“Which countries border France?”), likely due to formatting biases. 👉 Practical Takeaways - Optimize for your task: Use JSON for aggregation, edge lists for centrality. - Test your model: The best format depends on the LLM—Claude thrived with RDF Turtle, while Gemini preferred edge lists. - Don’t fear pseudonyms: Masking real names minimally impacts performance, useful for sensitive data. The benchmark is openly available, inviting researchers to add new tasks, graphs, and models. As AI handles larger knowledge bases, choosing the right “data language” becomes as critical as the reasoning logic itself. Paper: [KG-LLM-Bench: A Scalable Benchmark for Evaluating LLM Reasoning on Textualized Knowledge Graphs] Authors: Elan Markowitz, Krupa Galiya, Greg Ver Steeg, Aram Galstyan
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
·linkedin.com·
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
Towards Mechanistic Interpretability of Graph Transformers via Attention Graphs
Towards Mechanistic Interpretability of Graph Transformers via Attention Graphs
Our first attempts at mechanistic interpretability of Transformers from the perspective of network science and graph theory! Check out our preprint: arxiv.org/abs/2502.12352 A wonderful collaboration with superstar MPhil students Batu El, Deepro Choudhury, as well as Pietro Lio' as part of the Geometric Deep Learning class last year at University of Cambridge Department of Computer Science and Technology We were motivated by Demis Hassabis calling AlphaFold and other AI systems for scientific discovery as ‘engineering artifacts’. We need new tools to interpret the underlying mechanisms and advance our scientific understanding. Graph Transformers are a good place to start. The key ideas are: - Attention across multi-heads and layers can be seen as a heterogenous, dynamically evolving graph. - Attention graphs are complex systems represent information flow in Transformers. - We can use network science to extract mechanistic insights from them! More to come on the network science perspective to understanding LLMs next! | 13 comments on LinkedIn
·linkedin.com·
Towards Mechanistic Interpretability of Graph Transformers via Attention Graphs
Unifying Text Semantics and Graph Structures for Temporal Text-attributed Graphs with Large Language Models
Unifying Text Semantics and Graph Structures for Temporal Text-attributed Graphs with Large Language Models
LLMs are taking Graph Neural Networks to the next level: While we've been discussing LLMs for natural language, they're quietly changing how we represent…
Unifying Text Semantics and Graph Structures for Temporal Text-attributed Graphs with Large
·linkedin.com·
Unifying Text Semantics and Graph Structures for Temporal Text-attributed Graphs with Large Language Models
Zep packs Temporal Knowledge Graphs + Semantic Entity Extraction + Cypher Queries storage—Outperforming MemGPT with 94.8% Accuracy
Zep packs Temporal Knowledge Graphs + Semantic Entity Extraction + Cypher Queries storage—Outperforming MemGPT with 94.8% Accuracy
🎁⏳ Zep packs Temporal Knowledge Graphs + Semantic Entity Extraction + Cypher Queries storage—Outperforming MemGPT with 94.8% Accuracy. Build Personalized AI… | 46 comments on LinkedIn
Zep packs Temporal Knowledge Graphs + Semantic Entity Extraction + Cypher Queries storage—Outperforming MemGPT with 94.8% Accuracy
·linkedin.com·
Zep packs Temporal Knowledge Graphs + Semantic Entity Extraction + Cypher Queries storage—Outperforming MemGPT with 94.8% Accuracy
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval This Multi-Granular Graph Framework uses PageRank and Keyword-Chunk Graph to have the Best Cost-Quality Tradeoff ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》The Problem: Knowledge Graphs Are Expensive (and Clunky) AI agents need context to answer complex questions—like connecting “COVID vaccines” to “myocarditis risks” across research papers. But today’s solutions face two nightmares: ✸ Cost: Building detailed knowledge graphs with LLMs can cost $33,000 for a 5GB legal case. ✸ Quality: Cheap methods (like KNN graphs) miss key relationships, leading to 32% worse answers. ☆ Imagine training an AI doctor that either bankrupts you or misdiagnoses patients. Ouch. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》The Fix: KET-RAG’s Two-Layer Brain KET-RAG merges precision (knowledge graphs) and efficiency (keyword-text maps) into one system: ✸ Layer 1: Knowledge Graph Skeleton ☆ Uses PageRank to find core text chunks (like “vaccine side effects” in medical docs). ☆ Builds a sparse graph only on these chunks with LLMs—saving 80% of indexing costs. ✸ Layer 2: Keyword-Chunk Bipartite Graph ☆ Links keywords (e.g., “myocarditis”) to all related text snippets—no LLM needed. ☆ Acts as a “fast lane” for retrieving context without expensive entity extraction. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》Results: Beating Microsoft’s Graph-RAG with Pennies On HotpotQA and MuSiQue benchmarks, KET-RAG: ✸ Retrieves 81.6% of critical info vs. Microsoft’s 74.6%—with 10x lower cost. ✸ Boosts answer accuracy (F1 score) by 32.4% while cutting indexing bills by 20%. ✸ Scales to terabytes of data without melting budgets. ☆ Think of it as a Tesla Model 3 outperforming a Lamborghini at 1/10th the price. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》Why AI Agents Need This AI agents aren’t just chatbots—they’re problem solvers for medicine, law, and customer service. KET-RAG gives them: ✸ Real-time, multi-hop reasoning: Connecting “drug A → gene B → side effect C” in milliseconds. ✸ Cost-effective scalability: Deploying agents across millions of documents without going broke. ✸ Adaptability: Mixing precise knowledge graphs (for critical data) with keyword maps (for speed). Paper in comments ≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣ 》Build Your Own Supercharged AI Agent? 🔮 Join My 𝐇𝐚𝐧𝐝𝐬-𝐎𝐧 𝐀𝐈 𝐀𝐠𝐞𝐧𝐭𝐬 𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 TODAY! and Learn Building AI Agent with Langgraph/Langchain, CrewAI and OpenAI Swarm + RAG Pipelines 𝐄𝐧𝐫𝐨𝐥𝐥 𝐍𝐎𝐖 [34% discount]: 👉 https://lnkd.in/eGuWr4CH | 10 comments on LinkedIn
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
·linkedin.com·
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph…
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
·linkedin.com·
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
Knowledge Graph In-Context Learning
Knowledge Graph In-Context Learning
Unlocking universal reasoning across knowledge graphs. Knowledge graphs (KGs) are powerful tools for organizing and reasoning over vast amounts of… | 13 comments on LinkedIn
Knowledge Graph In-Context Learning
·linkedin.com·
Knowledge Graph In-Context Learning
Graph-constrained Reasoning
Graph-constrained Reasoning
🚀 Exciting New Research: "Graph-constrained Reasoning (GCR)" - Enabling Faithful KG-grounded LLM Reasoning with Zero Hallucination! 🧠 🎉 Proud to share our… | 11 comments on LinkedIn
Graph-constrained Reasoning
·linkedin.com·
Graph-constrained Reasoning
Medical Graph RAG
Medical Graph RAG
LLMs and Knowledge Graphs: A love story 💓 Researchers from University of Oxford recently released MedGraphRAG. At its core, MedGraphRAG is a framework…
·linkedin.com·
Medical Graph RAG