LLMs generate possibilities; knowledge graphs remember what works
LLMs generate possibilities; knowledge graphs remember what works. Together, they forge the recursive memory and creative engine that enables AI systems to truly evolve themselves.
Combining neural components (like large language models) with symbolic verification creates a powerful framework for self-evolution that overcomes limitations of either approach used independently.
AlphaEvolve demonstrates that self-evolving systems face a fundamental tension between generating novel solutions and ensuring those solutions actually work.
The paper shows how AlphaEvolve addresses this through a hybrid architecture where:
Neural components (LLMs) provide creative generation of code modifications by drawing on patterns learned from vast training data
Symbolic components (code execution) provide ground truth verification through deterministic evaluation
Without this combination, a system would either generate interesting but incorrect solutions (neural-only approach) or be limited to small, safe modifications within known patterns (symbolic-only approach).
The system can operate at multiple levels of abstraction depending on the problem: raw solution evolution, constructor function evolution, search algorithm evolution, or co-evolution of intermediate solutions and search algorithms.
This capability emanates directly from the neurosymbolic integration, where:
Neural networks excel at working with continuous, high-dimensional spaces and recognizing patterns across abstraction levels
Symbolic systems provide precise representations of discrete structures and logical relationships
This enables AlphaEvolve to modify everything from specific lines of code to entire algorithmic approaches.
While AlphaEvolve currently uses an evolutionary database, a knowledge graph structure could significantly enhance self-evolution by:
Capturing evolutionary relationships between solutions
Identifying patterns of code changes that consistently lead to improvements
Representing semantic connections between different solution approaches
Supporting transfer learning across problem domains
Automated, objective evaluation is the core foundation enabling self-evolution:
The main limitation of AlphaEvolve is that it handles problems for which it is possible to devise an automated evaluator.
This evaluation component provides the "ground truth" feedback that guides evolution, allowing the system to:
Differentiate between successful and unsuccessful modifications
Create selection pressure toward better-performing solutions
Avoid hallucinations or non-functional solutions that might emerge from neural components alone.
When applied to optimize Gemini's training kernels, the system essentially improved the very LLM technology that powers it. | 12 comments on LinkedIn
LLMs generate possibilities; knowledge graphs remember what works
NodeRAG restructures knowledge into a heterograph: a rich, layered, musical graph where each node plays a different role
NodeRAG restructures knowledge into a heterograph: a rich, layered, musical graph where each node plays a different role.
It’s not just smarter retrieval. It’s structured memory for AI agents.
》 Why NodeRAG?
Most Retrieval-Augmented Generation (RAG) methods retrieve chunks of text. Good enough — until you need reasoning, precision, and multi-hop understanding.
This is how NodeRAG solves these problems:
》 🔹Step 1: Graph Decomposition
NodeRAG begins by decomposing raw text into smart building blocks:
✸ Semantic Units (S): Little event nuggets ("Hinton won the Nobel Prize.")
✸ Entities (N): Key names or concepts ("Hinton", "Nobel Prize")
✸ Relationships (R): Links between entities ("awarded to")
✩ This is like teaching your AI to recognize the actors, actions, and scenes inside any document.
》 🔹Step 2: Graph Augmentation
Decomposition alone isn't enough. NodeRAG augments the graph by identifying important hubs:
✸ Node Importance: Using K-Core and Betweenness Centrality to find critical nodes
✩ Important entities get special attention — their attributes are summarized into new nodes (A).
✸ Community Detection: Grouping related nodes into communities and summarizing them into high-level insights (H).
✩ Each community gets a "headline" overview node (O) for quick retrieval.
It's like adding context and intuition to raw facts.
》 🔹 Step 3: Graph Enrichment
Knowledge without detail is brittle. So NodeRAG enriches the graph:
✸ Original Text: Full chunks are linked back into the graph (Text nodes, T)
✸ Semantic Edges: Using HNSW for fast, meaningful similarity connections
✩ Only smart nodes are embedded (not everything!) — saving huge storage space.
✩ Dual search (exact + vector) makes retrieval laser-sharp.
It’s like turning a 2D map into a 3D living world.
》 🔹 Step 4: Graph Searching
Now comes the magic.
✸ Dual Search: First find strong entry points (by name or by meaning)
✸ Shallow Personalized PageRank (PPR): Expand carefully from entry points to nearby relevant nodes.
✩ No wandering into irrelevant parts of the graph. The search is surgical.
✩ Retrieval includes fine-grained semantic units, attributes, high-level elements — everything you need, nothing you don't.
It’s like sending out agents into a city — and they return not with everything they saw, but exactly what you asked for, summarized and structured.
》 Results: NodeRAG's Performance
Compared to GraphRAG, LightRAG, NaiveRAG, and HyDE — NodeRAG wins across every major domain: Tech, Science, Writing, Recreation, and Finance.
NodeRAG isn’t just a better graph. NodeRAG is a new operating system for memory.
≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣
⫸ꆛ Want to build Real-World AI agents?
Join My 𝗛𝗮𝗻𝗱𝘀-𝗼𝗻 𝗔𝗜 𝗔𝗴𝗲𝗻𝘁 𝗧𝗿𝗮𝗶𝗻𝗶𝗻𝗴 TODAY!
➠ Build Real-World AI Agents + RAG Pipelines
➠ Learn 3 Tools: LangGraph/LangChain | CrewAI | OpenAI Swarm
➠ Work with Text, Audio, Video and Tabular Data
👉𝗘𝗻𝗿𝗼𝗹𝗹 𝗡𝗢𝗪 (𝟯𝟰% 𝗱𝗶𝘀𝗰𝗼𝘂𝗻𝘁):
https://lnkd.in/eGuWr4CH
| 20 comments on LinkedIn
NodeRAG restructures knowledge into a heterograph: a rich, layered, musical graph where each node plays a different role
Announcing general availability of Amazon Bedrock Knowledge Bases GraphRAG with Amazon Neptune Analytics | Amazon Web Services
Today, Amazon Web Services (AWS) announced the general availability of Amazon Bedrock Knowledge Bases GraphRAG (GraphRAG), a capability in Amazon Bedrock Knowledge Bases that enhances Retrieval-Augmented Generation (RAG) with graph data in Amazon Neptune Analytics. In this post, we discuss the benefits of GraphRAG and how to get started with it in Amazon Bedrock Knowledge Bases.
Lessons Learned from Evaluating NodeRAG vs Other RAG Systems
🔎 Lessons Learned from Evaluating NodeRAG vs Other RAG Systems
I recently dug into the NodeRAG paper (https://lnkd.in/gwaJHP94) and it was eye-opening not just for how it performed, but for what it revealed about the evolution of RAG (Retrieval-Augmented Generation) systems.
Some key takeaways for me:
👉 NaiveRAG is stronger than you think.
Brute-force retrieval using simple vector search sometimes beats graph-based methods, especially when graph structures are too coarse or noisy.
👉 GraphRAG was an important step, but not the final answer.
While it introduced knowledge graphs and community-based retrieval, GraphRAG sometimes underperformed NaiveRAG because its communities could be too coarse, leading to irrelevant retrieval.
👉 LightRAG reduced token cost, but at the expense of accuracy.
By focusing on retrieving just 1-hop neighbors instead of traversing globally, LightRAG made retrieval cheaper — but often missed important multi-hop reasoning paths, losing precision.
👉 NodeRAG shows what mature RAG looks like.
NodeRAG redesigned the graph structure itself:
Instead of homogeneous graphs, it uses heterogeneous graphs with fine-grained semantic units, entities, relationships, and high-level summaries — all as nodes.
It combines dual search (exact match + semantic search) and shallow Personalized PageRank to precisely retrieve the most relevant context.
The result?
🚀 Highest accuracy across multi-hop and open-ended benchmarks
🚀 Lowest token retrieval (i.e., lower inference costs)
🚀 Faster indexing and querying
🧠 Key takeaway:
In the RAG world, it’s no longer about retrieving more — it’s about retrieving better.
Fine-grained, explainable, efficient retrieval will define the next generation of RAG systems.
If you’re working on RAG architectures, NodeRAG’s design principles are well worth studying!
Would love to hear how others are thinking about the future of RAG systems. 🚀📚
#RAG #KnowledgeGraphs #AI #LLM #NodeRAG #GraphRAG #LightRAG #MachineLearning #GenAI #KnowledegGraphs
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning ...
👉 Why This Matters
Most AI systems blend knowledge graphs (structured data) with large language models (flexible reasoning). But there’s a hidden variable: "how" you translate the graph into text for the AI. Researchers discovered that the formatting choice alone can swing performance by up to "17.5%" on reasoning tasks. Imagine solving 1 in 5 more problems correctly just by adjusting how you present data.
👉 What They Built
KG-LLM-Bench is a new benchmark to test how language models reason with knowledge graphs.
It includes five tasks:
- Triple verification (“Does this fact exist?”)
- Shortest path finding (“How are two concepts connected?”)
- Aggregation (“How many entities meet X condition?”)
- Multi-hop reasoning (“Which entities linked to A also have property B?”)
- Global analysis (“Which node is most central?”)
The team tested seven models (Claude, GPT-4o, Gemini, Llama, Nova) with five ways to “textualize” graphs, from simple edge lists to structured JSON and semantic web formats like RDF Turtle.
👉 Key Insights
1. Format matters more than assumed:
- Structured JSON and edge lists performed best overall, but results varied by task.
- For example, JSON excels at aggregation tasks (data is grouped by entity), while edge lists help identify central nodes (repeated mentions highlight connections).
2. Models don’t cheat:
Replacing real entity names with fake ones (e.g., “France” → “Verdania”) caused only a 0.2% performance drop, proving models rely on context, not memorized knowledge.
3. Token efficiency:
- Edge lists used ~2,600 tokens vs. JSON-LD’s ~13,500. Shorter formats free up context space for complex reasoning.
- But concise ≠ always better: structured formats improved accuracy for tasks requiring grouped data.
4. Models struggle with directionality:
Counting outgoing edges (e.g., “Which countries does France border?”) is easier than incoming ones (“Which countries border France?”), likely due to formatting biases.
👉 Practical Takeaways
- Optimize for your task: Use JSON for aggregation, edge lists for centrality.
- Test your model: The best format depends on the LLM—Claude thrived with RDF Turtle, while Gemini preferred edge lists.
- Don’t fear pseudonyms: Masking real names minimally impacts performance, useful for sensitive data.
The benchmark is openly available, inviting researchers to add new tasks, graphs, and models. As AI handles larger knowledge bases, choosing the right “data language” becomes as critical as the reasoning logic itself.
Paper: [KG-LLM-Bench: A Scalable Benchmark for Evaluating LLM Reasoning on Textualized Knowledge Graphs]
Authors: Elan Markowitz, Krupa Galiya, Greg Ver Steeg, Aram Galstyan
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
Is developing an ontology from an LLM really feasible?
It seems the answer on whether an LMM would be able to replace the whole text-to-ontology pipeline is a resounding ‘no’. If you’re one of those who think that should be (or even is?) a ‘yes’: why, and did you do the experiments that show it’s as good as the alternatives (with the results available)? And I mean a proper ontology, not a knowledge graph with numerous duplications and contradictions and lacking constraints.
For a few gentle considerations (and pointers to longer arguments) and a summary figure of processes the LLM supposedly would be replacing: see https://lnkd.in/dG_Xsv_6 | 43 comments on LinkedIn
Knowledge graphs for LLM grounding and avoiding hallucination
This blog post is part of a series that dives into various aspects of SAP’s approach to Generative AI, and its technical underpinnings. In previous blog posts of this series, you learned about how to use large language models (LLMs) for developing AI applications in a trustworthy and reliable manner...
Build your hybrid-Graph for RAG & GraphRAG applications using the power of NLP | LinkedIn
Build a graph for RAG application for a price of a chocolate bar! What is GraphRAG for you? What is GraphRAG? What does GraphRAG mean from your perspective? What if you could have a standard RAG and a GraphRAG as a combi-package, with just a query switch? The fact is, there is no concrete, universal
What is really Graph RAG? Inspired by "From Local to Global: A Graph RAG Approach to Query-Focused Summarization" paper from Microsoft! How do you combine… | 12 comments on LinkedIn
A zero-hallucination AI chatbot that answered over 10000 questions of students at the University of Chicago using GraphRAG
UChicago Genie is now open source! How we built a zero-hallucination AI chatbot that answered over 10000 questions of students at the University of… | 25 comments on LinkedIn
a zero-hallucination AI chatbot that answered over 10000 questions of students at the University of Chicago
Enhancing RAG-based apps by constructing and leveraging knowledge graphs with open-source LLMs
Graph Retrieval Augmented Generation (Graph RAG) is emerging as a powerful addition to traditional vector search retrieval methods. Graphs are great at repre...