GraphNews

#LLM
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
Entity alignment, which is a prerequisite for creating a more comprehensive Knowledge Graph (KG), involves pinpointing equivalent entities across disparate KGs. Contemporary methods for entity alignment have predominantly utilized knowledge embedding models to procure entity embeddings that encapsulate various similarities-structural, relational, and attributive. These embeddings are then integrated through attention-based information fusion mechanisms. Despite this progress, effectively harnessing multifaceted information remains challenging due to inherent heterogeneity. Moreover, while Large Language Models (LLMs) have exhibited exceptional performance across diverse downstream tasks by implicitly capturing entity semantics, this implicit knowledge has yet to be exploited for entity alignment. In this study, we propose a Large Language Model-enhanced Entity Alignment framework (LLMEA), integrating structural knowledge from KGs with semantic knowledge from LLMs to enhance entity alignment. Specifically, LLMEA identifies candidate alignments for a given entity by considering both embedding similarities between entities across KGs and edit distances to a virtual equivalent entity. It then engages an LLM iteratively, posing multiple multi-choice questions to draw upon the LLM's inference capability. The final prediction of the equivalent entity is derived from the LLM's output. Experiments conducted on three public datasets reveal that LLMEA surpasses leading baseline models. Additional ablation studies underscore the efficacy of our proposed framework.
·arxiv.org·
Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment
The Intersection of Graphs and Language Models
The Intersection of Graphs and Language Models
The Intersection of Graphs and Language Models 🔲 ⚫ Large language models (LLMs) have rapidly advanced, displaying impressive abilities in comprehending… | 27 comments on LinkedIn
The Intersection of Graphs and Language Models
·linkedin.com·
The Intersection of Graphs and Language Models
LangGraph: Multi-Agent Workflows
LangGraph: Multi-Agent Workflows
Links * Python Examples * JS Examples * YouTube Last week we highlighted LangGraph - a new package (available in both Python and JS) to better enable creation of LLM workflows containing cycles, which are a critical component of most agent runtimes. As a part of the launch, we highlighted two simple runtimes:
a second set of use cases for langgraph - multi-agent workflows. In this blog we will cover:What does "multi-agent" mean?Why are "multi-agent" workflows interesting?Three concrete examples of using LangGraph for multi-agent workflowsTwo examples of third-party applications built on top of LangGraph using multi-agent workflows (GPT-Newspaper and CrewAI)Comparison to other frameworks (Autogen and CrewAI)
·blog.langchain.dev·
LangGraph: Multi-Agent Workflows
🦜🕸️LangGraph | 🦜️🔗 Langchain
🦜🕸️LangGraph | 🦜️🔗 Langchain
⚡ Building language agents as graphs ⚡
🦜🕸️LangGraph⚡ Building language agents as graphs ⚡Overview​LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner. It is inspired by Pregel and Apache Beam. The current interface exposed is one inspired by NetworkX.The main use is for adding cycles to your LLM application. Crucially, this is NOT a DAG framework. If you want to build a DAG, you should use just use LangChain Expression Language.Cycles are important for agent-like behaviors, where you call an LLM in a loop, asking it what action to take next.
·python.langchain.com·
🦜🕸️LangGraph | 🦜️🔗 Langchain
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation 🔗 As artificial intelligence permeates business… | 29 comments on LinkedIn
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
·linkedin.com·
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
pacoid (Paco Xander Nathan)
pacoid (Paco Xander Nathan)
Python open source projects; natural language meets graph technologies; graph topological transformations; graph levels of detail (abstraction layers)
·huggingface.co·
pacoid (Paco Xander Nathan)
Understand and Exploit GenAI With Gartner’s New Impact Radar
Understand and Exploit GenAI With Gartner’s New Impact Radar
Use Gartner’s impact radar for generative AI to plan investments and strategy with four key themes in mind: ☑️Model-related innovations ☑️Model performance and AI safety ☑️Model build and data-related ☑️AI-enabled applications Explore all 25 technologies and trends: https://www.gartner.com/en/articles/understand-and-exploit-gen-ai-with-gartner-s-new-impact-radar
·gartner.com·
Understand and Exploit GenAI With Gartner’s New Impact Radar
The Role of the Ontologist in the Age of LLMs
The Role of the Ontologist in the Age of LLMs
What do we mean when we say something is a kind of thing? I’ve been wrestling with that question a great deal of late, partly because I think the role of the ontologist transcends the application of knowledge graphs, especially as I’ve watched LLMs and Llamas become a bigger part of the discussion.
·ontologist.substack.com·
The Role of the Ontologist in the Age of LLMs
Knowledge Engineering Using Large Language Models
Knowledge Engineering Using Large Language Models
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.
·drops.dagstuhl.de·
Knowledge Engineering Using Large Language Models
On to Knowledge-infused Language Models
On to Knowledge-infused Language Models
A broad and deep body of on-going research – hundreds of experiments! – has shown quite conclusively that knowledge graphs are essential to guide, complement, and enrich LLMs in systematic ways. The very wide variety of tests over domains and possible combinations of KGs and LLMs attests to the robu
·linkedin.com·
On to Knowledge-infused Language Models
Do Similar Entities have Similar Embeddings?
Do Similar Entities have Similar Embeddings?
Knowledge graph embedding models (KGEMs) developed for link prediction learn vector representations for graph entities, known as embeddings. A common tacit assumption is the KGE entity similarity assumption, which states that these KGEMs retain the graph's structure within their embedding space, i.e., position similar entities close to one another. This desirable property make KGEMs widely used in downstream tasks such as recommender systems or drug repurposing. Yet, the alignment of graph similarity with embedding space similarity has rarely been formally evaluated. Typically, KGEMs are assessed based on their sole link prediction capabilities, using ranked-based metrics such as Hits@K or Mean Rank. This paper challenges the prevailing assumption that entity similarity in the graph is inherently mirrored in the embedding space. Therefore, we conduct extensive experiments to measure the capability of KGEMs to cluster similar entities together, and investigate the nature of the underlying factors. Moreover, we study if different KGEMs expose a different notion of similarity. Datasets, pre-trained embeddings and code are available at: https://github.com/nicolas-hbt/similar-embeddings.
·arxiv.org·
Do Similar Entities have Similar Embeddings?