Found 15 bookmarks
Newest
Ontologies bring context
Ontologies bring context
I used the o word last week and it hit a few nerves. Ontologies bring context. But then context engineering is very poorly understood. Agent engineers speak about it, expect everyone is doing it, know but almost everyone is winging it. Here's what context engineering is definitely not - ie. longer prompts. What it actually is - the right information, with the right meaning, at the right time. Not more but the right information with the right meaning. Sounds super abstract. That's why a brief video that actually breaks down how to load context. Okay. Not brief. but context needs context.
Ontologies bring context
·linkedin.com·
Ontologies bring context
Beyond RDF vs LPG: Operational Ontologies, Hybrid Semantics, and Why We Still Chose a Property Graph | LinkedIn
Beyond RDF vs LPG: Operational Ontologies, Hybrid Semantics, and Why We Still Chose a Property Graph | LinkedIn
How to stay sane about “semantic Graph RAG” when your job is shipping reliable systems, not winning ontology theology wars. You don’t wake up in the morning thinking about OWL profiles or SPARQL entailment regimes.
·linkedin.com·
Beyond RDF vs LPG: Operational Ontologies, Hybrid Semantics, and Why We Still Chose a Property Graph | LinkedIn
Your agents NEED a semantic layer
Your agents NEED a semantic layer
Your agents NEED a semantic layer 🫵 Traditional RAG systems embed documents, retrieve similar chunks, and feed them to LLMs. This works for simple Q&A. It fails catastrophically for agents that need to reason across systems. Why? Because semantic similarity doesn't capture relationships. Your vector database can tell you that two documents are "about bonds." It can't tell you that Document A contains the official pricing methodology, Document B is a customer complaint referencing that methodology, and Document C is an assembly guide that superseded both. These relationships are invisible to embeddings. What semantic layers provide: Entity resolution across data silos. When "John Smith" in your CRM, "J. Smith" in email, and "john.smith@company.com" in logs all map to the same person node, agents can traverse the complete context. Cross-domain entity linking through knowledge graphs. Products in your database connect to assembly guides, which link to customer reviews, which reference support tickets. Single-query traversal instead of application-level joins. Provenance-tracked derivations. Every extracted entity, inferred relationship, and generated embedding maintains lineage to source data. Critical for regulatory compliance and debugging agent behavior. Ontology-grounded reasoning. Financial instruments mapped to FIBO standards. Products mapped to domain taxonomies. Agents reason with structured vocabulary, not statistical word associations. The technical implementation pattern: Layer 1: Unified graph database supporting vector, structured, and semi-structured data types in single queries. Layer 2: Entity extraction pipeline with coreference resolution and deduplication across sources. Layer 3: Relationship inference and cross-domain linking using both explicit identifiers and contextual signals. Layer 4: Separation of first-party data from derived artifacts with clear tagging for safe regeneration. The result: Agents can traverse "Product → described_in → AssemblyGuide → improved_by → CommunityTip → authored_by → Expert" in a single graph query instead of five API calls with application-level joins. Model Context Protocol is emerging as the open standard for semantic tool modeling. Not just describing APIs, but encoding what tools do, when to use them, and how outputs compose. This enables agents to discover and reason about capabilities dynamically. The competitive moat isn't your model choice. The moat is your knowledge graph architecture and the accumulated entity relationships that took years to build. | 28 comments on LinkedIn
Your agents NEED a semantic layer
·linkedin.com·
Your agents NEED a semantic layer
Automatic Ontology Generation Still Falls Short & Why Applied Ontologists Deliver the ROI | LinkedIn
Automatic Ontology Generation Still Falls Short & Why Applied Ontologists Deliver the ROI | LinkedIn
For all the excitement around large language models, the latest research from Simona-Vasilica Oprea and Georgiana Stănescu (Electronics 14:1313, 2025) offers a reality check. Automatic ontology generation, even with novel prompting techniques like Memoryless CQ-by-CQ and Ontogenia, remains a partial
·linkedin.com·
Automatic Ontology Generation Still Falls Short & Why Applied Ontologists Deliver the ROI | LinkedIn
A new notebook exploring Semantic Entity Resolution & Extraction using DSPy and Google's new LangExtract library.
A new notebook exploring Semantic Entity Resolution & Extraction using DSPy and Google's new LangExtract library.
Just released a new notebook exploring Semantic Entity Resolution & Extraction using DSPy (Community) and Google's new LangExtract library. Inspired by Russell Jurney’s excellent work on semantic entity resolution, this demo follows his approach of combining: ✅ embeddings, ✅ kNN blocking, ✅ and LLM matching with DSPy (Community). On top of that, I added a general extraction layer to test-drive LangExtract, a Gemini-powered, open-source Python library for reliable structured information extraction. The goal? Detect and merge mentions of the same real-world entities across text. It’s an end-to-end flow tackling one of the most persistent data challenges. Check it out, experiment with your own data, 𝐞𝐧𝐣𝐨𝐲 𝐭𝐡𝐞 𝐬𝐮𝐦𝐦𝐞𝐫 and let me know your thoughts! cc Paco Nathan you might like this 😉 https://wor.ai/8kQ2qa
a new notebook exploring Semantic Entity Resolution & Extraction using DSPy (Community) and Google's new LangExtract library.
·linkedin.com·
A new notebook exploring Semantic Entity Resolution & Extraction using DSPy and Google's new LangExtract library.
Baking π and Building Better AI | LinkedIn
Baking π and Building Better AI | LinkedIn
I've spent long, hard years learning how to talk about knowledge graphs and semantics with software engineers who have little training in linguistics. I feel quite fluent at this point, after investing huge amounts of effort into understanding statistics (I was a humanities undergrad) and into unpac
·linkedin.com·
Baking π and Building Better AI | LinkedIn
how both OWL and SHACL can be employed during the decision-making phase for AI Agents when using a knowledge graph instead of relying on an LLM that hallucinates
how both OWL and SHACL can be employed during the decision-making phase for AI Agents when using a knowledge graph instead of relying on an LLM that hallucinates
𝙏𝙝𝙤𝙪𝙜𝙝𝙩 𝙛𝙤𝙧 𝙩𝙝𝙚 𝙙𝙖𝙮: I've been mulling over how both OWL and SHACL can be employed during the decision-making phase for AI Agents when using a knowledge graph instead of relying on an LLM that hallucinates. In this way, the LLM can still be used for assessment and sensory feedback, but it augments the graph, not the other way around. OWL and SHACL serve different roles. SHACL is not just a preprocessing validator; it can play an active role in constraining, guiding, or triggering decisions, especially when integrated into AI pipelines. However, OWL is typically more central to inferencing and reasoning tasks. SHACL can actively participate in decision-making, especially when decisions require data integrity, constraint enforcement, or trigger-based logic. In complex agents, OWL provides the inferencing engine, while SHACL acts as the constraint gatekeeper and occasionally contributes to rule-based decision-making. For example, an AI agent processes RDF data describing an applicant's skills, degree, and experience. SHACL validates the data's structure, ensuring required fields are present and correctly formatted. OWL reasoning infers that the applicant is qualified for a technical role and matches the profile of a backend developer. SHACL is then used again to check policy compliance. With all checks passed, the applicant is shortlisted, and a follow-up email is triggered. In AI agent decision-making, OWL and SHACL often work together in complementary ways. SHACL is commonly used as a preprocessing step to validate incoming RDF data. If the data fails validation, it's flagged or excluded, ensuring only clean, structurally sound data reaches the OWL reasoner. In this role, SHACL acts as a gatekeeper. They can also operate in parallel or in an interleaved manner within a pipeline. As decisions evolve, SHACL shapes may be checked mid-process. Some AI agents even use SHACL as a rule engine—to trigger alerts, detect actionable patterns, or constrain reasoning paths—while OWL continues to handle more complex semantic inferences, such as class hierarchies or property logic. Finally, SHACL can augment decision-making by confirming whether OWL-inferred actions comply with specific constraints. OWL may infer that “A is a type of B, so do X,” and SHACL then determines whether doing X adheres to a policy or requirement. Because SHACL supports closed-world assumptions (which OWL does not), it plays a valuable role in enforcing policies or compliance rules during decision execution. Illustrated:
how both OWL and SHACL can be employed during the decision-making phase for AI Agents when using a knowledge graph instead of relying on an LLM that hallucinates
·linkedin.com·
how both OWL and SHACL can be employed during the decision-making phase for AI Agents when using a knowledge graph instead of relying on an LLM that hallucinates
Foundation Models Know Enough
Foundation Models Know Enough
LLMs already contain overlapping world models. You just have to ask them right. Ontologists reply to an LLM output, “That’s not a real ontology—it’s not a formal conceptualization.” But that’s just the No True Scotsman fallacy dressed up in OWL. Boring. Not growth-oriented. Look forward, angel. A foundation model is a compression of human knowledge. The real problem isn't that we "lack a conceptualization". The real problem with an FM is that they contain too many. FMs contain conceptualizations—plural. Messy? Sure. But usable. At Stardog, we’re turning this latent structure into real ontologies using symbolic knowledge distillation. Prompt orchestration → structure extraction → formal encoding. OWL, SHACL, and friends. Shake till mixed. Rinse. Repeat. Secret sauce simmered and reduced. This isn't theoretical hard. We avoid that. It’s merely engineering hard. We LTF into that! But the payoff means bootstrapping rich, new ontologies at scale: faster, cheaper, with lineage. It's the intersection of FM latent space, formal ontology, and user intent expressed via CQs. We call it the Symbolic Latent Layer (SLL). Cute eh? The future of enterprise AI isn’t just documents. It’s distilling structured symbolic knowledge from LLMs and plugging it into agents, workflows, and reasoning engines. You don’t need a priesthood to get a formal ontology anymore. You need a good prompt and a smarter pipeline and the right EKG platform. There's a lot more to say about this so I said it at Stardog Labs https://lnkd.in/eY5Sibed | 17 comments on LinkedIn
·linkedin.com·
Foundation Models Know Enough
Want to Fix LLM Hallucination? Neurosymbolic Alone Won’t Cut It
Want to Fix LLM Hallucination? Neurosymbolic Alone Won’t Cut It
Want to Fix LLM Hallucination? Neurosymbolic Alone Won’t Cut It The Conversation’s new piece makes a clear case for neurosymbolic AI—integrating symbolic logic with statistical learning—as the long-term fix for LLM hallucinations. It’s a timely and necessary argument: “No matter how large a language model gets, it can’t escape its fundamental lack of grounding in rules, logic, or real-world structure. Hallucination isn’t a bug, it’s the default.” But what’s crucial—and often glossed over—is that symbolic logic alone isn’t enough. The real leap comes from adding formal ontologies and semantic constraints that make meaning machine-computable. OWL, Shapes Constraint Language (SHACL), and frameworks like BFO, Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE), the Suggested Upper Merged Ontology (SUMO), and the Common Core Ontologies (CCO) don’t just “represent rules”—they define what exists, what can relate, and under what conditions inference is valid. That’s the difference between “decorating” a knowledge graph and engineering one that can detect, explain, and prevent hallucinations in practice. I’d go further: • Most enterprise LLM hallucinations are just semantic errors—mislabeling, misattribution, or class confusion that only formal ontologies can prevent. • Neurosymbolic systems only deliver if their symbolic half is grounded in ontological reality, not just handcrafted rules or taxonomies. The upshot: We need to move beyond mere integration of symbols and neurons. We need semantic scaffolding—ontologies as infrastructure—to ensure AI isn’t just fluent, but actually right. Curious if others are layering formal ontologies (BFO, DOLCE, SUMO) into their AI stacks yet? Or are we still hoping that more compute and prompt engineering will do the trick? #NeuroSymbolicAI #SemanticAI #Ontology #LLMs #AIHallucination #KnowledgeGraphs #AITrust #AIReasoning
Want to Fix LLM Hallucination? Neurosymbolic Alone Won’t Cut It
·linkedin.com·
Want to Fix LLM Hallucination? Neurosymbolic Alone Won’t Cut It