KnowPath: Knowledge-enhanced Reasoning via LLM-generated Inference Paths over Knowledge Graphs
Breaking LLM Hallucinations in a Smarter Way!
(It’s not about feeding more data)
Large Language Models (LLMs) still struggle with factual inaccuracies, but…
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
This Multi-Granular Graph Framework uses PageRank and Keyword-Chunk Graph to have the Best Cost-Quality Tradeoff
﹌﹌﹌﹌﹌﹌﹌﹌﹌
》The Problem: Knowledge Graphs Are Expensive (and Clunky)
AI agents need context to answer complex questions—like connecting “COVID vaccines” to “myocarditis risks” across research papers. But today’s solutions face two nightmares:
✸ Cost: Building detailed knowledge graphs with LLMs can cost $33,000 for a 5GB legal case.
✸ Quality: Cheap methods (like KNN graphs) miss key relationships, leading to 32% worse answers.
☆ Imagine training an AI doctor that either bankrupts you or misdiagnoses patients. Ouch.
﹌﹌﹌﹌﹌﹌﹌﹌﹌
》The Fix: KET-RAG’s Two-Layer Brain
KET-RAG merges precision (knowledge graphs) and efficiency (keyword-text maps) into one system:
✸ Layer 1: Knowledge Graph Skeleton
☆ Uses PageRank to find core text chunks (like “vaccine side effects” in medical docs).
☆ Builds a sparse graph only on these chunks with LLMs—saving 80% of indexing costs.
✸ Layer 2: Keyword-Chunk Bipartite Graph
☆ Links keywords (e.g., “myocarditis”) to all related text snippets—no LLM needed.
☆ Acts as a “fast lane” for retrieving context without expensive entity extraction.
﹌﹌﹌﹌﹌﹌﹌﹌﹌
》Results: Beating Microsoft’s Graph-RAG with Pennies
On HotpotQA and MuSiQue benchmarks, KET-RAG:
✸ Retrieves 81.6% of critical info vs. Microsoft’s 74.6%—with 10x lower cost.
✸ Boosts answer accuracy (F1 score) by 32.4% while cutting indexing bills by 20%.
✸ Scales to terabytes of data without melting budgets.
☆ Think of it as a Tesla Model 3 outperforming a Lamborghini at 1/10th the price.
﹌﹌﹌﹌﹌﹌﹌﹌﹌
》Why AI Agents Need This
AI agents aren’t just chatbots—they’re problem solvers for medicine, law, and customer service. KET-RAG gives them:
✸ Real-time, multi-hop reasoning: Connecting “drug A → gene B → side effect C” in milliseconds.
✸ Cost-effective scalability: Deploying agents across millions of documents without going broke.
✸ Adaptability: Mixing precise knowledge graphs (for critical data) with keyword maps (for speed).
Paper in comments
≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣
》Build Your Own Supercharged AI Agent?
🔮 Join My 𝐇𝐚𝐧𝐝𝐬-𝐎𝐧 𝐀𝐈 𝐀𝐠𝐞𝐧𝐭𝐬 𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 TODAY!
and Learn Building AI Agent with Langgraph/Langchain, CrewAI and OpenAI Swarm + RAG Pipelines
𝐄𝐧𝐫𝐨𝐥𝐥 𝐍𝐎𝐖 [34% discount]:
👉 https://lnkd.in/eGuWr4CH | 10 comments on LinkedIn
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
Adaptive Graph of Thoughts (AGoT), a test-time framework that replaces rigid prompting strategies (like Chain/Tree of Thought) with dynamic directed acyclic graphs
Dynamic Reasoning Graphs + LLMs = 🤝
Large Language Models (LLMs) often stumble on complex tasks when confined to linear reasoning.
What if they could dynamically restructure their thought process like humans?
A new paper introduces Adaptive Graph of Thoughts (AGoT), a test-time framework that replaces rigid prompting strategies (like Chain/Tree of Thought) with dynamic directed acyclic graphs (DAGs).
Instead of forcing fixed reasoning steps, AGoT recursively decomposes problems into sub-tasks, selectively expanding only the most critical pathways.
This is crucial for industries like scientific research or legal analysis, where problems demand non-linear, nested reasoning.
The key innovation lies in complexity checks: AGoT assesses each reasoning node, spawning sub-graphs for intricate subtasks while resolving simpler ones directly.
This mirrors how experts allocate mental effort—drilling into uncertainties while streamlining obvious steps.
The framework achieved 46.2% improvement on GPQA (a notoriously hard science QA benchmark), rivaling gains from compute-heavy fine-tuning.
By unifying chain, tree, and graph paradigms, AGoT retains CoT’s clarity, ToT’s exploration, and GoT’s flexibility without manual tuning.
The result? LLMs that self-adapt their reasoning depth based on problem complexity—no architectural changes needed.
For AI practitioners, AGoT’s DAG structure offers a principled interface to scale reasoning modularly.
↓
𝐖𝐚𝐧𝐧𝐚 𝐤𝐧𝐨𝐰 𝐰𝐡𝐚𝐭 𝐲𝐨𝐮 𝐦𝐢𝐬𝐬𝐞𝐝? Join my newsletter with 50k+ readers that breaks down all you need to know about the latest LLM research: llmwatch.com 💡
Adaptive Graph of Thoughts (AGoT), a test-time framework that replaces rigid prompting strategies (like Chain/Tree of Thought) with dynamic directed acyclic graphs
GFM-RAG: The First Graph Foundation Model for Retrieval-Augmented Generation
🚀 Introducing GFM-RAG: The First Graph Foundation Model for Retrieval-Augmented Generation!
We’re excited to share our latest research: GFM-RAG: Graph… | 20 comments on LinkedIn
GFM-RAG: The First Graph Foundation Model for Retrieval-Augmented Generation
SymAgent: A Neural-Symbolic Self-Learning Agent Framework for Complex Reasoning over Knowledge Graphs
LLMs that automatically fill knowledge gaps - too good to be true?
Large Language Models (LLMs) often stumble in logical tasks due to hallucinations, especially when relying on incomplete Knowledge Graphs (KGs).
Current methods naively trust KGs as exhaustive truth sources - a flawed assumption in real-world domains like healthcare or finance where gaps persist.
SymAgent is a new framework that approaches this problem by making KGs active collaborators, not passive databases.
Its dual-module design combines symbolic logic with neural flexibility:
1. Agent-Planner extracts implicit rules from KGs (e.g., "If drug X interacts with Y, avoid co-prescription") to decompose complex questions into structured steps.
2. Agent-Executor dynamically pulls external data when KG triples are missing, bypassing the "static repository" limitation.
Perhaps most impressively, SymAgent’s self-learning observes failed reasoning paths to iteratively refine its strategy and flag missing KG connections - achieving 20-30% accuracy gains over raw LLMs.
Equipped with SymAgent, even 7B models rival their much larger counterparts by leveraging this closed-loop system.
It would be great if LLMs were able to autonomously curate knowledge and adapt to domain shifts without costly retraining.
But are we there yet? Are hybrid architectures like SymAgent the future?
↓
Liked this post? Join my newsletter with 50k+ readers that breaks down all you need to know about the latest LLM research: llmwatch.com 💡
Dynamic Reasoning Graphs + LLMs = 🤝
Large Language Models (LLMs) often stumble on complex tasks when confined to linear reasoning.
What if they could… | 10 comments on LinkedIn
And so we set out to understand _feedforward_ graphs (i.e. graphs w/o back edges) ⏩
Turns out these graphs are rather understudied for how often they are…
KAG: Boosting LLMs in Professional Domains via Knowledge Augmented...
The recently developed retrieval-augmented generation (RAG) technology has enabled the efficient construction of domain-specific applications. However, it also has limitations, including the gap...
Ontologies as Conceptualizations by Nicola Guarino
Nicola Guarino Keynote Address for the Ontology Summit 2025 on 22 January 2025 "Ontologies as specifications of conceptualizations: correctness, precision, a...
Terminology Augmented Generation (TAG)? Recently some fellow terminologists have proposed the new term "Terminology-Augmented Generation (TAG)" to refer to… | 29 comments on LinkedIn
What is really Graph RAG? Inspired by "From Local to Global: A Graph RAG Approach to Query-Focused Summarization" paper from Microsoft! How do you combine… | 12 comments on LinkedIn
Knowledge Graphs as a source of trust for LLM-powered enterprise question answering
Knowledge Graphs as a source of trust for LLM-powered enterprise question answering That has been our position from the beginning when we started our research… | 29 comments on LinkedIn
Knowledge Graphs as a source of trust for LLM-powered enterprise question answering
Graph contrastive learning (GCL) is a self-supervised learning technique for graphs that focuses on learning representations by contrasting different views of…
OG-RAG: Ontology-Grounded Retrieval-Augmented Generation For Large...
This paper presents OG-RAG, an Ontology-Grounded Retrieval Augmented Generation method designed to enhance LLM-generated responses by anchoring retrieval processes in domain-specific ontologies....
Large Language Models, Knowledge Graphs and Search Engines: A...
Much has been discussed about how Large Language Models, Knowledge Graphs and Search Engines can be combined in a synergistic manner. A dimension largely absent from current academic discourse is...
Background: The field of Artificial Intelligence has undergone cyclical periods of growth and decline, known as AI summers and winters. Currently, we are in the third AI summer, characterized by...
GraphAgent — An innovative AI agent that efficiently integrates structured and unstructured data
🚀 Excited to Share Our Recent Work! 🌟 GraphAgent — An innovative AI agent that efficiently integrates structured and unstructured data! 📚 👉 Paper link:…
GraphAgent — An innovative AI agent that efficiently integrates structured and unstructured data
PG-Schema: Schemas for Property Graphs | Proceedings of the ACM on Management of Data
Property graphs have reached a high level of maturity, witnessed by multiple robust
graph database systems as well as the ongoing ISO standardization effort aiming at
creating a new standard Graph Query Language (GQL). Yet, despite documented demand,
...
What if creating Linked Open Data was less like coding and more like writing? Could anyone extend the Semantic Web by sharing a document? Publish a knowledge… | 13 comments on LinkedIn
Want to catch up on Graph Neural Networks? Now's the time! Graph Neural Networks (GNNs) have become a popular solution for problems that include network data,…
❓How Can Graph Neural Networks Enhance Recommendation Systems by Incorporating Contextual Information? Traditional recommendation systems often leverage a…
Can Graph Learning Improve Planning in LLM-based Agents?
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs). It aims to break down complex user requests in natural...
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph…
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
ICYMI, here are the slides from our standing room only talk at NeurIPS yesterday! Concepts we discuss include: ➡️ Quantifying how much Transformer you need to… | 18 comments on LinkedIn