Found 64 bookmarks
Newest
Graph RAG open source stack to generate and visualize knowledge graphs
Graph RAG open source stack to generate and visualize knowledge graphs
A serious knowledge graph effort is much more than a bit of Github, but customers and adventurous minds keep asking me if there is an easy to use (read: POC click-and-go solution) graph RAG open source stack they can use to generate knowledge graphs. So, here is my list of projects I keep an eye on. Mind, there is nothing simple if you venture into graphs, despite all the claims and marketing. Things like graph machine learning, graph layout and distributed graph analytics is more than a bit of pip install. The best solutions are hidden inside multi-nationals, custom made. Equity firms and investors sometimes ask me to evaluate innovations. It's amazing what talented people develop and never shows up in the news, or on Github. TrustGraph - The Knowledge Platform for AI https://trustgraph.ai/ The only one with a distributed architecture and made for enterprise KG. itext2kg - https://lnkd.in/e-eQbwV5 Clean and plain. Wrapped prompts done right. Fast GraphRAG - https://lnkd.in/e7jZ9GZH Popular and with some basic visualization. ZEP - https://lnkd.in/epxtKtCU Geared towards agentic memory. Triplex - https://lnkd.in/eGV8FR56 LLM to extract triples. GraphRAG Local with UI - https://lnkd.in/ePGeqqQE Another starting point for small KG efforts. Or to convince your investors. GraphRAG visualizer - https://lnkd.in/ePuMmfkR Makes pretty pictures but not for drill-downs. Neo4j's GraphRAG - https://lnkd.in/ex_A52RU A python package with a focus on getting data into Neo4j. OpenSPG - https://lnkd.in/er4qUFJv Has a different take and more academic. Microsoft GraphRAG - https://lnkd.in/e_a-mPum A classic but I don't think anyone is using this beyond experimentation. yWorks - https://www.yworks.com If you are serious about interactive graph layout. Ogma - https://lnkd.in/evwnJCBK If you are serious about graph data viz. Orbifold Consulting - https://lnkd.in/e-Dqg4Zx If you are serious about your KG journey. #GraphRAG #GraphViz #GraphMachineLearning #KnowledgeGraphs
graph RAG open source stack they can use to generate knowledge graphs.
·linkedin.com·
Graph RAG open source stack to generate and visualize knowledge graphs
SousLesensVocables is a set of tools developed to manage Thesaurus and Ontologies resources through SKOS , OWL and RDF standards and graph visualisation approaches
SousLesensVocables is a set of tools developed to manage Thesaurus and Ontologies resources through SKOS , OWL and RDF standards and graph visualisation approaches
SousLesensVocables is a set of tools developed to manage Thesaurus and Ontologies resources through SKOS , OWL and RDF standards and graph visualisation approaches
·souslesens.github.io·
SousLesensVocables is a set of tools developed to manage Thesaurus and Ontologies resources through SKOS , OWL and RDF standards and graph visualisation approaches
The Dataverse Project: 750K FAIR Datasets and a Living Knowledge Graph
The Dataverse Project: 750K FAIR Datasets and a Living Knowledge Graph
"I'm Ukrainian and I'm wearing a suit, so no complaints about me from the Oval Office" - that's the start of my lecture about building Artificial Intelligence with Croissant ML in the Dataverse data platform, for the Bio x AI Hackathon kick-off event in Berlin. https://lnkd.in/ePYHCfJt * 750,000+ FAIR datasets across the world forcing the innovation of the whole data landscape. * A knowledge graph with 50M+ triples. * AI-ready metadata exports. * Qdrant as a vector storage, Google Meta Mistral AI as LLM model providers. * Adrian Gschwend Qlever as fastest triple store for Dataverse knowledge graphs Multilingual, machine-readable, queryable scientific data at scale. If you're interested, you can also apply for the 2-month #BioAgentHack online hackathon: • $125K+ prizes • Mentorship from Biotech and AI leaders • Build alongside top open-science researchers & devs More info: https://lnkd.in/eGhvaKdH
·linkedin.com·
The Dataverse Project: 750K FAIR Datasets and a Living Knowledge Graph
Synalinks is an open-source framework designed to streamline the creation, evaluation, training, and deployment of industry-standard Language Models (LMs) applications
Synalinks is an open-source framework designed to streamline the creation, evaluation, training, and deployment of industry-standard Language Models (LMs) applications
🎉 We're thrilled to unveil Synalinks (🧠🔗), an open-source framework designed to streamline the creation, evaluation, training, and deployment of…
Synalinks (🧠🔗), an open-source framework designed to streamline the creation, evaluation, training, and deployment of industry-standard Language Models (LMs) applications
·linkedin.com·
Synalinks is an open-source framework designed to streamline the creation, evaluation, training, and deployment of industry-standard Language Models (LMs) applications
yfiles jupyter graphs for sparql: The open-source adapter for working with RDF databases
yfiles jupyter graphs for sparql: The open-source adapter for working with RDF databases
📣Hey Semantic Web/SPARQL/RDF/OWL/Knowledge graph community: Finally! We heard you! I just got this fresh from the dev kitchen: 🎉 Try our free SPARQL query result visualization widget for Jupyter Notebooks! Based on our popular generic graph visualization widget for Jupyter, this widget makes it super convenient to add beautiful graph visualizations of your SPARQL queries to your Jupyter Notebooks. Check out the example notebooks for Google Colab in the GitHub repo https://lnkd.in/e8JP-eiM ✨ This is a pre-1.0-release but already quite capable, as it builds on the well-tested generic widget. We are looking to get your feedback on the features for the final release, so please do take a look and let me know your feedback here, or tell us on GitHub! What features are you missing? What do you like best about the widget? Let me know in the comments and I'll talk to the devs 😊 #sparql #rdf #owl #semanticweb #knowledgegraphs #visualization
GitHub - yWorks/yfiles-jupyter-graphs-for-sparql: The open-source adapter for working with RDF databas
·linkedin.com·
yfiles jupyter graphs for sparql: The open-source adapter for working with RDF databases
RDF-to-Gephi
RDF-to-Gephi
I have never been a fan of the "bubble and arrows" kind of graph visualizations. It is generaly useless. But when you can see the entire graph, and can tune the rendering, you start understanding the topology and structure - and ultimately you can tell a story with your graph (and that's what we all love, stories). Gephi is a graph visualization tool to tell these sort of stories with graphs, that has been around for 15 (20 ?) years. Interestingly, while quite a number of Gephi plugins exist to load data (including from neo4j), no decent working plugin exist to load RDF data (yes, there was a "SemanticWebImport" plugin, but it looks outdated, with an old documentation, and does not work with latest - 0.10 - version of Gephi). This doesn't tell anything good for the semantic knowledge graph community. A few weeks ago I literally stumbled upon an old project we developed in 2017 to convert RDF graphs into the GEXF format that can be loaded in Gephi. Time for a serious cleaning, reengineering, and packaging ! So here is a v1.0.0 of the rebranded rdf2gephi utility tool ! The tool runs as a command line that can read an RDF knowledge graph (from files or a SPARQL endpoint), execute a set of SPARQL queries, and turn that into a set of nodes and edges in a GEXF file. rdf2gephi provides default queries to run a simple conversion without any parameters, but most of the time you will want to tune how your graph is turned into GEXF nodes and edges (for example, in my case, `org:Membership` entities relating `foaf:Persons` with `org:Organizations` are not turned into nodes, but into edges, and I want to ignore some other entities). And then what ? then you can load the GEXF file in Gephi, and run a few operations to showcase your graph (see the little screencast video I recorded) : run a layout algorithm, color nodes based on their rdf:type or another attribute you converted, change their size according to the (in-)degree, detect clusters based on a modularity algorithm, etc. etc. - and then export as SVG, PNG, or another format. Also, one of the cool feature supported by the GEXF format are dynamic graphs, where each nodes and edges can be associated to a date range. You can then see your graph evolving through time, like in a movie ! I hope I will be able to tell a more concrete Gephi-powered, RDF-backed graph-story in a future post ! All links in comments.
·linkedin.com·
RDF-to-Gephi
Nakala : from an RDF dataset to a query UI in minutes - SHACL automated generation and Sparnatural - Sparna Blog
Nakala : from an RDF dataset to a query UI in minutes - SHACL automated generation and Sparnatural - Sparna Blog
Here is a usecase of an automated version of Sparnatural submitted as an example for Veronika Heimsbakk’s SHACL for the Practitioner upcoming book about the Shapes Constraint Language (SHACL). “ The Sparnatural knowledge graph explorer leverages SHACL specifications to drive a user interface (UI) that allows end users to easily discover the content of an RDF graph. What…
·blog.sparna.fr·
Nakala : from an RDF dataset to a query UI in minutes - SHACL automated generation and Sparnatural - Sparna Blog
A zero-hallucination AI chatbot that answered over 10000 questions of students at the University of Chicago using GraphRAG
A zero-hallucination AI chatbot that answered over 10000 questions of students at the University of Chicago using GraphRAG
UChicago Genie is now open source! How we built a zero-hallucination AI chatbot that answered over 10000 questions of students at the University of… | 25 comments on LinkedIn
a zero-hallucination AI chatbot that answered over 10000 questions of students at the University of Chicago
·linkedin.com·
A zero-hallucination AI chatbot that answered over 10000 questions of students at the University of Chicago using GraphRAG
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph…
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
·linkedin.com·
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric