Found 62 bookmarks
Newest
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval This Multi-Granular Graph Framework uses PageRank and Keyword-Chunk Graph to have the Best Cost-Quality Tradeoff ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》The Problem: Knowledge Graphs Are Expensive (and Clunky) AI agents need context to answer complex questions—like connecting “COVID vaccines” to “myocarditis risks” across research papers. But today’s solutions face two nightmares: ✸ Cost: Building detailed knowledge graphs with LLMs can cost $33,000 for a 5GB legal case. ✸ Quality: Cheap methods (like KNN graphs) miss key relationships, leading to 32% worse answers. ☆ Imagine training an AI doctor that either bankrupts you or misdiagnoses patients. Ouch. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》The Fix: KET-RAG’s Two-Layer Brain KET-RAG merges precision (knowledge graphs) and efficiency (keyword-text maps) into one system: ✸ Layer 1: Knowledge Graph Skeleton ☆ Uses PageRank to find core text chunks (like “vaccine side effects” in medical docs). ☆ Builds a sparse graph only on these chunks with LLMs—saving 80% of indexing costs. ✸ Layer 2: Keyword-Chunk Bipartite Graph ☆ Links keywords (e.g., “myocarditis”) to all related text snippets—no LLM needed. ☆ Acts as a “fast lane” for retrieving context without expensive entity extraction. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》Results: Beating Microsoft’s Graph-RAG with Pennies On HotpotQA and MuSiQue benchmarks, KET-RAG: ✸ Retrieves 81.6% of critical info vs. Microsoft’s 74.6%—with 10x lower cost. ✸ Boosts answer accuracy (F1 score) by 32.4% while cutting indexing bills by 20%. ✸ Scales to terabytes of data without melting budgets. ☆ Think of it as a Tesla Model 3 outperforming a Lamborghini at 1/10th the price. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》Why AI Agents Need This AI agents aren’t just chatbots—they’re problem solvers for medicine, law, and customer service. KET-RAG gives them: ✸ Real-time, multi-hop reasoning: Connecting “drug A → gene B → side effect C” in milliseconds. ✸ Cost-effective scalability: Deploying agents across millions of documents without going broke. ✸ Adaptability: Mixing precise knowledge graphs (for critical data) with keyword maps (for speed). Paper in comments ≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣ 》Build Your Own Supercharged AI Agent? 🔮 Join My 𝐇𝐚𝐧𝐝𝐬-𝐎𝐧 𝐀𝐈 𝐀𝐠𝐞𝐧𝐭𝐬 𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 TODAY! and Learn Building AI Agent with Langgraph/Langchain, CrewAI and OpenAI Swarm + RAG Pipelines 𝐄𝐧𝐫𝐨𝐥𝐥 𝐍𝐎𝐖 [34% discount]: 👉 https://lnkd.in/eGuWr4CH | 10 comments on LinkedIn
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
·linkedin.com·
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
cuGraph and Graph RAG
cuGraph and Graph RAG
**!!!! Great Talk with Bradley Rees NVIDIA RAPIDS cuGraph lead at KDD 24 Conference !!** We had an excellent discussion about the cuGraph user experience in…
cuGraph
·linkedin.com·
cuGraph and Graph RAG
Plan Like a Graph
Plan Like a Graph
An easy trick to improve your LLM results without fine-tuning. Many people know "Few-Shot prompting" or "Chain of Thought prompting". A new (better) method was… | 77 comments on LinkedIn
Plan Like a Graph
·linkedin.com·
Plan Like a Graph
GraphReader: Long-Context Processing in AI
GraphReader: Long-Context Processing in AI
GraphReader: Long-Context Processing in AI ... As AI systems tackle increasingly complex tasks, the ability to effectively process and reason over long…
GraphReader: Long-Context Processing in AI
·linkedin.com·
GraphReader: Long-Context Processing in AI
How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks
How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks
💡 How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks? 🔎…
·linkedin.com·
How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks
A repo for ICML graph papers
A repo for ICML graph papers
Following ICLR Graph Papers, I've created a repo for ICML graph papers, grouped by topic. We've got around 250 papers focusing on Graphs and GNNs in ICML'24.…
·linkedin.com·
A repo for ICML graph papers
An Online Spatial-Temporal Graph Trajectory Planner for Autonomous Vehicles
An Online Spatial-Temporal Graph Trajectory Planner for Autonomous Vehicles
The autonomous driving industry is expected to grow by over 20 times in the coming decade and, thus, motivate researchers to delve into it. The primary focus of their research is to ensure safety, comfort, and efficiency. An autonomous vehicle has several modules responsible for one or more of the aforementioned items. Among these modules, the trajectory planner plays a pivotal role in the safety of the vehicle and the comfort of its passengers. The module is also responsible for respecting kinematic constraints and any applicable road constraints. In this paper, a novel online spatial-temporal graph trajectory planner is introduced to generate safe and comfortable trajectories. First, a spatial-temporal graph is constructed using the autonomous vehicle, its surrounding vehicles, and virtual nodes along the road with respect to the vehicle itself. Next, the graph is forwarded into a sequential network to obtain the desired states. To support the planner, a simple behavioral layer is also presented that determines kinematic constraints for the planner. Furthermore, a novel potential function is also proposed to train the network. Finally, the proposed planner is tested on three different complex driving tasks, and the performance is compared with two frequently used methods. The results show that the proposed planner generates safe and feasible trajectories while achieving similar or longer distances in the forward direction and comparable comfort ride.
·arxiv.org·
An Online Spatial-Temporal Graph Trajectory Planner for Autonomous Vehicles
DST-GTN: Dynamic Spatio-Temporal Graph Transformer Network for Traffic Forecasting
DST-GTN: Dynamic Spatio-Temporal Graph Transformer Network for Traffic Forecasting
Accurate traffic forecasting is essential for effective urban planning and congestion management. Deep learning (DL) approaches have gained colossal success in traffic forecasting but still face challenges in capturing the intricacies of traffic dynamics. In this paper, we identify and address this challenges by emphasizing that spatial features are inherently dynamic and change over time. A novel in-depth feature representation, called Dynamic Spatio-Temporal (Dyn-ST) features, is introduced, which encapsulates spatial characteristics across varying times. Moreover, a Dynamic Spatio-Temporal Graph Transformer Network (DST-GTN) is proposed by capturing Dyn-ST features and other dynamic adjacency relations between intersections. The DST-GTN can model dynamic ST relationships between nodes accurately and refine the representation of global and local ST characteristics by adopting adaptive weights in low-pass and all-pass filters, enabling the extraction of Dyn-ST features from traffic time-series data. Through numerical experiments on public datasets, the DST-GTN achieves state-of-the-art performance for a range of traffic forecasting tasks and demonstrates enhanced stability.
·arxiv.org·
DST-GTN: Dynamic Spatio-Temporal Graph Transformer Network for Traffic Forecasting
GraphGPT
GraphGPT
🌟GraphGPT🌟 (385 stars in GitHub) is accepted by 🌟SIGIR'24🌟 (only 20.1% acceptance rate)! Thank Yuhao Yang, wei wei, and other co-authors for their precious…
GraphGPT
·linkedin.com·
GraphGPT
Exploring the Potential of Large Language Models in Graph Generation
Exploring the Potential of Large Language Models in Graph Generation
Large language models (LLMs) have achieved great success in many fields, and recent works have studied exploring LLMs for graph discriminative tasks such as node classification. However, the abilities of LLMs for graph generation remain unexplored in the literature. Graph generation requires the LLM to generate graphs with given properties, which has valuable real-world applications such as drug discovery, while tends to be more challenging. In this paper, we propose LLM4GraphGen to explore the ability of LLMs for graph generation with systematical task designs and extensive experiments. Specifically, we propose several tasks tailored with comprehensive experiments to address key questions regarding LLMs' understanding of different graph structure rules, their ability to capture structural type distributions, and their utilization of domain knowledge for property-based graph generation. Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks, including rule-based and distribution-based generation. We also observe that popular prompting methods, such as few-shot and chain-of-thought prompting, do not consistently enhance performance. Besides, LLMs show potential in generating molecules with specific properties. These findings may serve as foundations for designing good LLMs based models for graph generation and provide valuable insights and further research.
·arxiv.org·
Exploring the Potential of Large Language Models in Graph Generation