Found 79 bookmarks
Newest
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval This Multi-Granular Graph Framework uses PageRank and Keyword-Chunk Graph to have the Best Cost-Quality Tradeoff ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》The Problem: Knowledge Graphs Are Expensive (and Clunky) AI agents need context to answer complex questions—like connecting “COVID vaccines” to “myocarditis risks” across research papers. But today’s solutions face two nightmares: ✸ Cost: Building detailed knowledge graphs with LLMs can cost $33,000 for a 5GB legal case. ✸ Quality: Cheap methods (like KNN graphs) miss key relationships, leading to 32% worse answers. ☆ Imagine training an AI doctor that either bankrupts you or misdiagnoses patients. Ouch. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》The Fix: KET-RAG’s Two-Layer Brain KET-RAG merges precision (knowledge graphs) and efficiency (keyword-text maps) into one system: ✸ Layer 1: Knowledge Graph Skeleton ☆ Uses PageRank to find core text chunks (like “vaccine side effects” in medical docs). ☆ Builds a sparse graph only on these chunks with LLMs—saving 80% of indexing costs. ✸ Layer 2: Keyword-Chunk Bipartite Graph ☆ Links keywords (e.g., “myocarditis”) to all related text snippets—no LLM needed. ☆ Acts as a “fast lane” for retrieving context without expensive entity extraction. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》Results: Beating Microsoft’s Graph-RAG with Pennies On HotpotQA and MuSiQue benchmarks, KET-RAG: ✸ Retrieves 81.6% of critical info vs. Microsoft’s 74.6%—with 10x lower cost. ✸ Boosts answer accuracy (F1 score) by 32.4% while cutting indexing bills by 20%. ✸ Scales to terabytes of data without melting budgets. ☆ Think of it as a Tesla Model 3 outperforming a Lamborghini at 1/10th the price. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》Why AI Agents Need This AI agents aren’t just chatbots—they’re problem solvers for medicine, law, and customer service. KET-RAG gives them: ✸ Real-time, multi-hop reasoning: Connecting “drug A → gene B → side effect C” in milliseconds. ✸ Cost-effective scalability: Deploying agents across millions of documents without going broke. ✸ Adaptability: Mixing precise knowledge graphs (for critical data) with keyword maps (for speed). Paper in comments ≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣ 》Build Your Own Supercharged AI Agent? 🔮 Join My 𝐇𝐚𝐧𝐝𝐬-𝐎𝐧 𝐀𝐈 𝐀𝐠𝐞𝐧𝐭𝐬 𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 TODAY! and Learn Building AI Agent with Langgraph/Langchain, CrewAI and OpenAI Swarm + RAG Pipelines 𝐄𝐧𝐫𝐨𝐥𝐥 𝐍𝐎𝐖 [34% discount]: 👉 https://lnkd.in/eGuWr4CH | 10 comments on LinkedIn
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
·linkedin.com·
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
SymAgent: A Neural-Symbolic Self-Learning Agent Framework for Complex Reasoning over Knowledge Graphs
SymAgent: A Neural-Symbolic Self-Learning Agent Framework for Complex Reasoning over Knowledge Graphs
LLMs that automatically fill knowledge gaps - too good to be true? Large Language Models (LLMs) often stumble in logical tasks due to hallucinations, especially when relying on incomplete Knowledge Graphs (KGs). Current methods naively trust KGs as exhaustive truth sources - a flawed assumption in real-world domains like healthcare or finance where gaps persist. SymAgent is a new framework that approaches this problem by making KGs active collaborators, not passive databases. Its dual-module design combines symbolic logic with neural flexibility: 1. Agent-Planner extracts implicit rules from KGs (e.g., "If drug X interacts with Y, avoid co-prescription") to decompose complex questions into structured steps. 2. Agent-Executor dynamically pulls external data when KG triples are missing, bypassing the "static repository" limitation. Perhaps most impressively, SymAgent’s self-learning observes failed reasoning paths to iteratively refine its strategy and flag missing KG connections - achieving 20-30% accuracy gains over raw LLMs. Equipped with SymAgent, even 7B models rival their much larger counterparts by leveraging this closed-loop system. It would be great if LLMs were able to autonomously curate knowledge and adapt to domain shifts without costly retraining. But are we there yet? Are hybrid architectures like SymAgent the future? ↓ Liked this post? Join my newsletter with 50k+ readers that breaks down all you need to know about the latest LLM research: llmwatch.com 💡
·linkedin.com·
SymAgent: A Neural-Symbolic Self-Learning Agent Framework for Complex Reasoning over Knowledge Graphs
Graph contrastive learning
Graph contrastive learning
Graph contrastive learning (GCL) is a self-supervised learning technique for graphs that focuses on learning representations by contrasting different views of…
Graph contrastive learning
·linkedin.com·
Graph contrastive learning
LightRAG
LightRAG
🚀 Breaking Boundaries in Graph + Retrieval-Augmented Generation (RAG)! 🌐🤖 The rapid pace of innovation in combining graphs with RAG is absolutely…
LightRAG
·linkedin.com·
LightRAG
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph…
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
·linkedin.com·
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
Knowledge Graph In-Context Learning
Knowledge Graph In-Context Learning
Unlocking universal reasoning across knowledge graphs. Knowledge graphs (KGs) are powerful tools for organizing and reasoning over vast amounts of… | 13 comments on LinkedIn
Knowledge Graph In-Context Learning
·linkedin.com·
Knowledge Graph In-Context Learning
Graph-constrained Reasoning
Graph-constrained Reasoning
🚀 Exciting New Research: "Graph-constrained Reasoning (GCR)" - Enabling Faithful KG-grounded LLM Reasoning with Zero Hallucination! 🧠 🎉 Proud to share our… | 11 comments on LinkedIn
Graph-constrained Reasoning
·linkedin.com·
Graph-constrained Reasoning
Medical Graph RAG
Medical Graph RAG
LLMs and Knowledge Graphs: A love story 💓 Researchers from University of Oxford recently released MedGraphRAG. At its core, MedGraphRAG is a framework…
·linkedin.com·
Medical Graph RAG
𝘛𝘩𝘦 𝘔𝘪𝘯𝘥𝘧𝘶𝘭-𝘙𝘈𝘎 𝘢𝘱𝘱𝘳𝘰𝘢𝘤𝘩 𝘪𝘴 𝘢 𝘧𝘳𝘢𝘮𝘦𝘸𝘰𝘳𝘬 𝘵𝘢𝘪𝘭𝘰𝘳𝘦𝘥 𝘧𝘰𝘳 𝘪𝘯𝘵𝘦𝘯𝘵-𝘣𝘢𝘴𝘦𝘥 𝘢𝘯𝘥 𝘤𝘰𝘯𝘵𝘦𝘹𝘵𝘶𝘢𝘭𝘭𝘺 𝘢𝘭𝘪𝘨𝘯𝘦𝘥 𝘬𝘯𝘰𝘸𝘭𝘦𝘥𝘨𝘦 𝘳𝘦𝘵𝘳𝘪𝘦𝘷𝘢𝘭.
𝘛𝘩𝘦 𝘔𝘪𝘯𝘥𝘧𝘶𝘭-𝘙𝘈𝘎 𝘢𝘱𝘱𝘳𝘰𝘢𝘤𝘩 𝘪𝘴 𝘢 𝘧𝘳𝘢𝘮𝘦𝘸𝘰𝘳𝘬 𝘵𝘢𝘪𝘭𝘰𝘳𝘦𝘥 𝘧𝘰𝘳 𝘪𝘯𝘵𝘦𝘯𝘵-𝘣𝘢𝘴𝘦𝘥 𝘢𝘯𝘥 𝘤𝘰𝘯𝘵𝘦𝘹𝘵𝘶𝘢𝘭𝘭𝘺 𝘢𝘭𝘪𝘨𝘯𝘦𝘥 𝘬𝘯𝘰𝘸𝘭𝘦𝘥𝘨𝘦 𝘳𝘦𝘵𝘳𝘪𝘦𝘷𝘢𝘭.
𝗥𝗔𝗚 𝗜𝗺𝗽𝗹𝗲𝗺𝗲𝗻𝘁𝗮𝘁𝗶𝗼𝗻𝘀 𝗙𝗮𝗶𝗹 𝗗𝘂𝗲 𝗧𝗼 𝗜𝗻𝘀𝘂𝗳𝗳𝗶𝗰𝗶𝗲𝗻𝘁 𝗙𝗼𝗰𝘂𝘀 𝗢𝗻 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻 𝗜𝗻𝘁𝗲𝗻𝘁 𝘛𝘩𝘦 𝘔𝘪𝘯𝘥𝘧𝘶𝘭-𝘙𝘈𝘎… | 12 comments on LinkedIn
𝘛𝘩𝘦 𝘔𝘪𝘯𝘥𝘧𝘶𝘭-𝘙𝘈𝘎 𝘢𝘱𝘱𝘳𝘰𝘢𝘤𝘩 𝘪𝘴 𝘢 𝘧𝘳𝘢𝘮𝘦𝘸𝘰𝘳𝘬 𝘵𝘢𝘪𝘭𝘰𝘳𝘦𝘥 𝘧𝘰𝘳 𝘪𝘯𝘵𝘦𝘯𝘵-𝘣𝘢𝘴𝘦𝘥 𝘢𝘯𝘥 𝘤𝘰𝘯𝘵𝘦𝘹𝘵𝘶𝘢𝘭𝘭𝘺 𝘢𝘭𝘪𝘨𝘯𝘦𝘥 𝘬𝘯𝘰𝘸𝘭𝘦𝘥𝘨𝘦 𝘳𝘦𝘵𝘳𝘪𝘦𝘷𝘢𝘭.
·linkedin.com·
𝘛𝘩𝘦 𝘔𝘪𝘯𝘥𝘧𝘶𝘭-𝘙𝘈𝘎 𝘢𝘱𝘱𝘳𝘰𝘢𝘤𝘩 𝘪𝘴 𝘢 𝘧𝘳𝘢𝘮𝘦𝘸𝘰𝘳𝘬 𝘵𝘢𝘪𝘭𝘰𝘳𝘦𝘥 𝘧𝘰𝘳 𝘪𝘯𝘵𝘦𝘯𝘵-𝘣𝘢𝘴𝘦𝘥 𝘢𝘯𝘥 𝘤𝘰𝘯𝘵𝘦𝘹𝘵𝘶𝘢𝘭𝘭𝘺 𝘢𝘭𝘪𝘨𝘯𝘦𝘥 𝘬𝘯𝘰𝘸𝘭𝘦𝘥𝘨𝘦 𝘳𝘦𝘵𝘳𝘪𝘦𝘷𝘢𝘭.
An Overview of Knowledge Graph Embeddings
An Overview of Knowledge Graph Embeddings
An Overview of Knowledge Graph Embeddings (KGEs) – Part 1. 🧠🍄 Knowledge Graphs represent real-world facts as structured data. Nodes represent entities or…
An Overview of Knowledge Graph Embeddings
·linkedin.com·
An Overview of Knowledge Graph Embeddings
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
This is something very cool! 3. GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models "GraphReader addresses the…
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
·linkedin.com·
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected - SynaLinks/HybridAGI
·github.com·
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Ask your (research) question against 76 Million scientific articles: https://ask.orkg.org Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific…
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
·linkedin.com·
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you