Found 3 bookmarks
Newest
A Graph RAG (Retrieval-Augmented Generation) chat application that combines OpenAI GPT with knowledge graphs stored in GraphDB
A Graph RAG (Retrieval-Augmented Generation) chat application that combines OpenAI GPT with knowledge graphs stored in GraphDB
After seeing yet another Graph RAG demo using Neo4j with no ontology, I decided to show what real semantic Graph RAG looks like. The Problem with Most Graph RAG Demos: Everyone's building Graph RAG with LPG databases (Neo4j, TigerGraph, Arrango etc.) and calling it "knowledge graphs." But here's the thing: Without formal ontologies, you don't have a knowledge graph—you just have a graph database. The difference? ❌ LPG: Nodes and edges are just strings. No semantics. No reasoning. No standards. ✅ RDF/SPARQL: Formal ontologies (RDFS/OWL) that define domain knowledge. Machine-readable semantics. W3C standards. Built-in reasoning. So I Built a Real Semantic Graph RAG Using: - Microsoft Agent Framework - AI orchestration - Formal ontologies - RDFS/OWL knowledge representation - Ontotext GraphDB - RDF triple store - SPARQL - semantic querying - GPT-5 - ontology-aware extraction It's all on github, a simple template as boilerplate for you project: The "Jaguar problem": What does "Yesterday I was hit by a Jaguar" really mean? It is impossible to know without concept awareness. To demonstrate why ontologies matter, I created a corpus with mixed content: 🐆 Wildlife jaguars (Panthera onca) 🚗 Jaguar cars (E-Type, XK-E) 🎸 Fender Jaguar guitars I fed this to GPT-5 along with a jaguar conservation ontology. The result? The LLM automatically extracted ONLY wildlife-related entities—filtering out cars and guitars—because it understood the semantic domain from the ontology. No post-processing. No manual cleanup. Just intelligent, concept-aware extraction. This is impossible with LPG databases because they lack formal semantic structure. Labels like (:Jaguar) are just strings—the LLM has no way to know if you mean the animal, car, or guitar. Knowledge Graphs = "Data for AI" LLMs don't need more data—they need structured, semantic data they can reason over. That's what formal ontologies provide: ✅ Domain context ✅ Class hierarchies ✅ Property definitions ✅ Relationship semantics ✅ Reasoning rules This transforms Graph RAG from keyword matching into true semantic retrieval. Check Out the Full Implementation, the repo includes: Complete Graph RAG implementation with Microsoft Agent Framework Working jaguar conservation knowledge graph Jupyter notebook: ontology-aware extraction from mixed-content text https://lnkd.in/dmf5HDRm And if you have gotten this far, you realize that most of this post is written by Cursor ... That goes for the code too. 😁 Your Turn: I know this is a contentious topic. Many teams are heavily invested in LPG-based Graph RAG. What are your thoughts on RDF vs. LPG for Graph RAG? Drop a comment below! #GraphRAG #KnowledgeGraphs #SemanticWeb #RDF #SPARQL #AI #MachineLearning #LLM #Ontology #KnowledgeRepresentation #OpenSource #neo4j #graphdb #agentic-framework #ontotext #agenticai | 148 comments on LinkedIn
·linkedin.com·
A Graph RAG (Retrieval-Augmented Generation) chat application that combines OpenAI GPT with knowledge graphs stored in GraphDB
A new notebook exploring Semantic Entity Resolution & Extraction using DSPy and Google's new LangExtract library.
A new notebook exploring Semantic Entity Resolution & Extraction using DSPy and Google's new LangExtract library.
Just released a new notebook exploring Semantic Entity Resolution & Extraction using DSPy (Community) and Google's new LangExtract library. Inspired by Russell Jurney’s excellent work on semantic entity resolution, this demo follows his approach of combining: ✅ embeddings, ✅ kNN blocking, ✅ and LLM matching with DSPy (Community). On top of that, I added a general extraction layer to test-drive LangExtract, a Gemini-powered, open-source Python library for reliable structured information extraction. The goal? Detect and merge mentions of the same real-world entities across text. It’s an end-to-end flow tackling one of the most persistent data challenges. Check it out, experiment with your own data, 𝐞𝐧𝐣𝐨𝐲 𝐭𝐡𝐞 𝐬𝐮𝐦𝐦𝐞𝐫 and let me know your thoughts! cc Paco Nathan you might like this 😉 https://wor.ai/8kQ2qa
a new notebook exploring Semantic Entity Resolution & Extraction using DSPy (Community) and Google's new LangExtract library.
·linkedin.com·
A new notebook exploring Semantic Entity Resolution & Extraction using DSPy and Google's new LangExtract library.