Found 2 bookmarks
Newest
Introducing the GitLab Knowledge Graph
Introducing the GitLab Knowledge Graph
Today, I'd like to introduce the GitLab Knowledge Graph. This release includes a code indexing engine, written in Rust, that turns your codebase into a live, embeddable graph database for LLM RAG. You can install it with a simple one-line script, parse local repositories directly in your editor, and connect via MCP to query your workspace and over 50,000 files in under 100 milliseconds. We also saw GKG agents scoring up to 10% higher on the SWE-Bench-lite benchmarks, with just a few tools and a small prompt added to opencode (an open-source coding agent). On average, we observed a 7% accuracy gain across our eval runs, and GKG agents were able to solve new tasks compared to the baseline agents. You can read more from the team's research here https://lnkd.in/egiXXsaE. This release is just the first step: we aim for this local version to serve as the backbone of a Knowledge Graph service that enables you to query the entire GitLab Software Development Life Cycle—from an Issue down to a single line of code. I am incredibly proud of the work the team has done. Thank you, Michael U., Jean-Gabriel Doyon, Bohdan Parkhomchuk, Dmitry Gruzd, Omar Qunsul, and Jonathan Shobrook. You can watch Bill Staples and I present this and more in the GitLab 18.4 release here: https://lnkd.in/epvjrhqB Try today at: https://lnkd.in/eAypneFA Roadmap: https://lnkd.in/eXNYQkEn Watch more below for a complete, in-depth tutorial on what we've built: | 19 comments on LinkedIn
introduce the GitLab Knowledge Graph
·linkedin.com·
Introducing the GitLab Knowledge Graph
A Knowledge Graph of code by GitLab
A Knowledge Graph of code by GitLab
If you could hire the smartest engineers and drop them in your code base would you expect miracles overnight? No, of course not! Because even if they are the best of coders, they don’t have context on your project, engineering processes and culture, security and compliance rules, user personas, business priorities, etc. The same is true of the very best agents.. they may know how to write (mostly) technically correct code, and have the context of your source code, but they’re still missing tons of context. Building agents that can deliver high quality outcomes, faster, is going to require much more than your source code, rules and a few prompts. Agents need the same full lifecyle context your engineers gain after being months and years on the job. LLMs will never have access to your company’s engineering systems to train on, so something has to bridge the knowledge gap and it shouldn’t be you, one prompt at a time. This is why we're building what we call our Knowledge Graph at GitLab. It's not just indexing files and code; it's mapping the relationships across your entire development environment. When an agent understands that a particular code block contains three security vulnerabilities, impacts two downstream services, and connects to a broader epic about performance improvements, it can make smarter recommendations and changes than just technically correct code. This kind of contextual reasoning is what separates valuable AI agents from expensive, slow, LLM driven search tools. We're moving toward a world where institutional knowledge becomes portable and queryable. The context of a veteran engineer who knows "why we built it this way" or "what happened last time we tried this approach" can now be captured, connected, and made available to both human teammates and AI agents. See the awesome demos below and I look forward to sharing more later this month in our 18.4 beta update!
·linkedin.com·
A Knowledge Graph of code by GitLab