Found 20 bookmarks
Newest
A Graph RAG (Retrieval-Augmented Generation) chat application that combines OpenAI GPT with knowledge graphs stored in GraphDB
A Graph RAG (Retrieval-Augmented Generation) chat application that combines OpenAI GPT with knowledge graphs stored in GraphDB
After seeing yet another Graph RAG demo using Neo4j with no ontology, I decided to show what real semantic Graph RAG looks like. The Problem with Most Graph RAG Demos: Everyone's building Graph RAG with LPG databases (Neo4j, TigerGraph, Arrango etc.) and calling it "knowledge graphs." But here's the thing: Without formal ontologies, you don't have a knowledge graph—you just have a graph database. The difference? ❌ LPG: Nodes and edges are just strings. No semantics. No reasoning. No standards. ✅ RDF/SPARQL: Formal ontologies (RDFS/OWL) that define domain knowledge. Machine-readable semantics. W3C standards. Built-in reasoning. So I Built a Real Semantic Graph RAG Using: - Microsoft Agent Framework - AI orchestration - Formal ontologies - RDFS/OWL knowledge representation - Ontotext GraphDB - RDF triple store - SPARQL - semantic querying - GPT-5 - ontology-aware extraction It's all on github, a simple template as boilerplate for you project: The "Jaguar problem": What does "Yesterday I was hit by a Jaguar" really mean? It is impossible to know without concept awareness. To demonstrate why ontologies matter, I created a corpus with mixed content: 🐆 Wildlife jaguars (Panthera onca) 🚗 Jaguar cars (E-Type, XK-E) 🎸 Fender Jaguar guitars I fed this to GPT-5 along with a jaguar conservation ontology. The result? The LLM automatically extracted ONLY wildlife-related entities—filtering out cars and guitars—because it understood the semantic domain from the ontology. No post-processing. No manual cleanup. Just intelligent, concept-aware extraction. This is impossible with LPG databases because they lack formal semantic structure. Labels like (:Jaguar) are just strings—the LLM has no way to know if you mean the animal, car, or guitar. Knowledge Graphs = "Data for AI" LLMs don't need more data—they need structured, semantic data they can reason over. That's what formal ontologies provide: ✅ Domain context ✅ Class hierarchies ✅ Property definitions ✅ Relationship semantics ✅ Reasoning rules This transforms Graph RAG from keyword matching into true semantic retrieval. Check Out the Full Implementation, the repo includes: Complete Graph RAG implementation with Microsoft Agent Framework Working jaguar conservation knowledge graph Jupyter notebook: ontology-aware extraction from mixed-content text https://lnkd.in/dmf5HDRm And if you have gotten this far, you realize that most of this post is written by Cursor ... That goes for the code too. 😁 Your Turn: I know this is a contentious topic. Many teams are heavily invested in LPG-based Graph RAG. What are your thoughts on RDF vs. LPG for Graph RAG? Drop a comment below! #GraphRAG #KnowledgeGraphs #SemanticWeb #RDF #SPARQL #AI #MachineLearning #LLM #Ontology #KnowledgeRepresentation #OpenSource #neo4j #graphdb #agentic-framework #ontotext #agenticai | 148 comments on LinkedIn
·linkedin.com·
A Graph RAG (Retrieval-Augmented Generation) chat application that combines OpenAI GPT with knowledge graphs stored in GraphDB
Open-source Graph Explorer v2.4.0 is now released, and it includes a new SPARQL editor
Open-source Graph Explorer v2.4.0 is now released, and it includes a new SPARQL editor
Calling all Graph Explorers! 📣 I'm excited to share that open-source Graph Explorer v2.4.0 is now released, and it includes a new SPARQL editor! Release notes: https://lnkd.in/ePhwPQ5W This means that in addition to being a powerful no-code exploration tool, you can now start your visualization and exploration by writing queries directly in SPARQL. (Gremlin & openCypher too for Property Graph workloads). This makes Graph Explorer an ideal companion for Amazon Neptune, as it supports connections via all three query languages, but you can connect to other graph databases that support these languages too. 🔹 Run it anywhere (it's open source): https://lnkd.in/ehbErxMV 🔹 Access through the AWS console in a Neptune graph notebook: https://lnkd.in/gZ7CJT8D Special thanks go to Kris McGinnes for his efforts. #AWS #AmazonNeptune #GraphExplorer #SPARQL #Gremlin #openCypher #KnowledgeGraph #OpenSource #RDF #LPG
open-source Graph Explorer v2.4.0 is now released, and it includes a new SPARQL editor
·linkedin.com·
Open-source Graph Explorer v2.4.0 is now released, and it includes a new SPARQL editor
Flexible-GraphRAG
Flexible-GraphRAG
𝗙𝗹𝗲𝘅𝗶𝗯𝗹𝗲 𝗚𝗿𝗮𝗽𝗵𝗥𝗔𝗚 𝗼𝗿 𝗥𝗔𝗚 is now flexing to the max using LlamaIndex, supports 𝟳 𝗴𝗿𝗮𝗽𝗵 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲𝘀, 𝟭𝟬 𝘃𝗲𝗰𝘁𝗼𝗿 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲𝘀, 𝟭𝟯 𝗱𝗮𝘁𝗮 𝘀𝗼𝘂𝗿𝗰𝗲𝘀, 𝗟𝗟𝗠𝘀, Docling 𝗱𝗼𝗰 𝗽𝗿𝗼𝗰𝗲𝘀𝘀𝗶𝗻𝗴, 𝗮𝘂𝘁𝗼 𝗰𝗿𝗲𝗮𝘁𝗲 𝗞𝗚𝘀, 𝗚𝗿𝗮𝗽𝗵𝗥𝗔𝗚, 𝗛𝘆𝗯𝗿𝗶𝗱 𝗦𝗲𝗮𝗿𝗰𝗵, 𝗔𝗜 𝗖𝗵𝗮𝘁 (shown Hyland products web page data src) 𝗔𝗽𝗮𝗰𝗵𝗲 𝟮.𝟬 𝗢𝗽𝗲𝗻 𝗦𝗼𝘂𝗿𝗰𝗲 𝗚𝗿𝗮𝗽𝗵: Neo4j ArcadeDB FalkorDB Kuzu NebulaGraph, powered by Vesoft (coming Memgraph and 𝗔𝗺𝗮𝘇𝗼𝗻 𝗡𝗲𝗽𝘁𝘂𝗻𝗲) 𝗩𝗲𝗰𝘁𝗼𝗿: Qdrant, Elastic, OpenSearch Project, Neo4j 𝘃𝗲𝗰𝘁𝗼𝗿, Milvus, created by Zilliz (coming Weaviate, Chroma, Pinecone, 𝗣𝗼𝘀𝘁𝗴𝗿𝗲𝗦𝗤𝗟 + 𝗽𝗴𝘃𝗲𝗰𝘁𝗼𝗿, LanceDB) Docling 𝗱𝗼𝗰𝘂𝗺𝗲𝗻𝘁 𝗽𝗿𝗼𝗰𝗲𝘀𝘀𝗶𝗻𝗴 𝗗𝗮𝘁𝗮 𝗦𝗼𝘂𝗿𝗰𝗲𝘀: using LlamaIndex readers: working: Web Pages, Wikipedia, Youtube, untested: Google Drive, Msft OneDrive, S3, Azure Blob, GCS, Box, SharePoint, previous: filesystem, Alfresco, CMIS. 𝗟𝗟𝗠𝘀: 𝗟𝗹𝗮𝗺𝗮𝗜𝗻𝗱𝗲𝘅 𝗟𝗟𝗠𝘀 (OpenAI, Ollama, Claude, Gemini, etc.) 𝗥𝗲𝗮𝗰𝘁, 𝗩𝘂𝗲, 𝗔𝗻𝗴𝘂𝗹𝗮𝗿 𝗨𝗜𝘀, 𝗠𝗖𝗣 𝘀𝗲𝗿𝘃𝗲𝗿, 𝗙𝗮𝘀𝘁𝗔𝗣𝗜 𝘀𝗲𝗿𝘃𝗲𝗿 𝗚𝗶𝘁𝗛𝘂𝗯 𝘀𝘁𝗲𝘃𝗲𝗿𝗲𝗶𝗻𝗲𝗿/𝗳𝗹𝗲𝘅𝗶𝗯𝗹𝗲-𝗴𝗿𝗮𝗽𝗵𝗿𝗮𝗴: https://lnkd.in/eUEeF2cN 𝗫.𝗰𝗼𝗺 𝗣𝗼𝘀𝘁 𝗼𝗻 𝗙𝗹𝗲𝘅𝗶𝗯𝗹𝗲 𝗚𝗿𝗮𝗽𝗵𝗥𝗔𝗚 𝗼𝗿 𝗥𝗔𝗚 𝗺𝗮𝘅 𝗳𝗹𝗲𝘅𝗶𝗻𝗴 https://lnkd.in/gHpTupAr 𝗜𝗻𝘁𝗲𝗴𝗿𝗮𝘁𝗲𝗱 𝗦𝗲𝗺𝗮𝗻𝘁𝗶𝗰𝘀 𝗕𝗹𝗼𝗴: https://lnkd.in/ehpjTV7d
·linkedin.com·
Flexible-GraphRAG
Announcing the formation of a Data Façades W3C Community Group
Announcing the formation of a Data Façades W3C Community Group
I am excited to announce the formation of a Data Façades W3C Community Group. Façade-X, initially introduced at SEMANTICS 2021 and successfully implemented by the SPARQL Anything project, provides a simple yet powerful, homogeneous view over diverse and heterogeneous data sources (e.g., CSV, JSON, XML, and many others). With the recent v1.0.0 release of SPARQL Anything, the time was right to work on the long-term stability and widespread adoption of this approach by developing an open, vendor-neutral technology. The Façade-X concept was born to allow SPARQL users to query data in any structured format in plain SPARQL. Therefore, the choice of a W3C community group to lead efforts on specifications is just natural. Specifications will enhance its reliability, foster innovation, and encourage various vendors and projects—including graph database developers — to provide their own compatible implementations. The primary goals of the Data Façades Community Group is to: Define the core specification of the Façade-X method. Define Standard Mappings: Formalize the required mappings and profiles for connecting Façade-X to common data formats. Define the specification of the query dialect: Provide a reference for the SPARQL dialect, configuration conventions (like SERVICE IRIs), and the functions/magic properties used. Establish Governance: Create a monitored, robust process for adding support for new data formats. Foster Collaboration: Build connections with relevant W3C groups (e.g., RDF & SPARQL, Data Shapes) and encourage involvement from developers, businesses, and adopters. Join us! With Luigi Asprino Ivo Velitchkov Justin Dowdy Paul Mulholland Andy Seaborne Ryan Shaw ... CG: https://lnkd.in/eSxuqsvn Github: https://lnkd.in/dkHGT8N3 SPARQL Anything #RDF #SPARQL #W3C #FX
announce the formation of a Data Façades W3C Community Group
·linkedin.com·
Announcing the formation of a Data Façades W3C Community Group
Hydra is a unique functional programming language based on the LambdaGraph data model.
Hydra is a unique functional programming language based on the LambdaGraph data model.
In case you were wondering what I have been up to lately, Hydra is a large part of it. This is the open source graph programming language I alluded to last year at the Knowledge Graph Conference. Hydra is almost ready for its 1.0 release, and I am planning on making it into a community project, possibly through the Apache Incubator. In this initial demo video, we take an arbitrary tabular dataset and use Hydra + Claude to map it into a property graph. More specifically, we use the LLM once to construct a pair of schemas and a mapping. From there, we apply the mapping deterministically and efficiently to each row of data, without additional calls to the LLM. The recording was a little too long for LinkedIn, so I broke it into two parts. I will post part 2 momentarily (edit: part 2 is here: https://lnkd.in/gZmHicXu). More videos will follow as we get closer to the release. GitHub: https://lnkd.in/g8v2hvd5 Discord: https://bit.ly/lg-discord
·linkedin.com·
Hydra is a unique functional programming language based on the LambdaGraph data model.
SPARQL Notebook extension for Visual Studio Code
SPARQL Notebook extension for Visual Studio Code
Our SPARQL Notebook extension for Visual Studio Code makes it super easy to document SPARQL queries and run them, either against live endpoints or directly on local RDF files. I just (finally!) published a 15-minute walkthrough on our YouTube channel Giant Global Graph. It gives you a quick overview of how it works and how you can get started. Link in the comments. Fun fact: I recorded this two years ago and apparently forgot to hit publish. Since then, we've added new features like improved table renderers with pivoting support, so it's even more useful now. Check it out! | 11 comments on LinkedIn
SPARQL Notebook extension for Visual Studio Code
·linkedin.com·
SPARQL Notebook extension for Visual Studio Code
Want to explore the Anthropic Transformer-Circuit's as a queryable graph?
Want to explore the Anthropic Transformer-Circuit's as a queryable graph?
Want to explore the Anthropic Transformer-Circuit's as a queryable graph? Wrote a script to import the graph json into Neo4j - code in Gist. https://lnkd.in/eT4NjQgY https://lnkd.in/e38TfQpF Next step - write directly from the circuit-tracer library to the graph db. https://lnkd.in/eVU_t6mS
Want to explore the Anthropic Transformer-Circuit's as a queryable graph?
·linkedin.com·
Want to explore the Anthropic Transformer-Circuit's as a queryable graph?
graphgeeks-lab/awesome-graph-universe: A curated list of resources for graph-related topics, including graph databases, analytics and science
graphgeeks-lab/awesome-graph-universe: A curated list of resources for graph-related topics, including graph databases, analytics and science
A curated list of resources for graph-related topics, including graph databases, analytics and science - graphgeeks-lab/awesome-graph-universe
Awesome Graph Universe 🌐 Welcome to Awesome Graph Universe, a curated list of resources, tools, libraries, and applications for working with graphs and networks. This repository covers everything from Graph Databases and Knowledge Graphs to Graph Analytics, Graph Computing, and beyond. Graphs and networks are essential in fields like data science, knowledge representation, machine learning, and computational biology. Our goal is to provide a comprehensive resource that helps researchers, developers, and enthusiasts explore and utilize graph-based technologies. Feel free to contribute by submitting pull requests! 🚀
·github.com·
graphgeeks-lab/awesome-graph-universe: A curated list of resources for graph-related topics, including graph databases, analytics and science