Found 75 bookmarks
Newest
An Online Spatial-Temporal Graph Trajectory Planner for Autonomous Vehicles
An Online Spatial-Temporal Graph Trajectory Planner for Autonomous Vehicles
The autonomous driving industry is expected to grow by over 20 times in the coming decade and, thus, motivate researchers to delve into it. The primary focus of their research is to ensure safety, comfort, and efficiency. An autonomous vehicle has several modules responsible for one or more of the aforementioned items. Among these modules, the trajectory planner plays a pivotal role in the safety of the vehicle and the comfort of its passengers. The module is also responsible for respecting kinematic constraints and any applicable road constraints. In this paper, a novel online spatial-temporal graph trajectory planner is introduced to generate safe and comfortable trajectories. First, a spatial-temporal graph is constructed using the autonomous vehicle, its surrounding vehicles, and virtual nodes along the road with respect to the vehicle itself. Next, the graph is forwarded into a sequential network to obtain the desired states. To support the planner, a simple behavioral layer is also presented that determines kinematic constraints for the planner. Furthermore, a novel potential function is also proposed to train the network. Finally, the proposed planner is tested on three different complex driving tasks, and the performance is compared with two frequently used methods. The results show that the proposed planner generates safe and feasible trajectories while achieving similar or longer distances in the forward direction and comparable comfort ride.
·arxiv.org·
An Online Spatial-Temporal Graph Trajectory Planner for Autonomous Vehicles
DST-GTN: Dynamic Spatio-Temporal Graph Transformer Network for Traffic Forecasting
DST-GTN: Dynamic Spatio-Temporal Graph Transformer Network for Traffic Forecasting
Accurate traffic forecasting is essential for effective urban planning and congestion management. Deep learning (DL) approaches have gained colossal success in traffic forecasting but still face challenges in capturing the intricacies of traffic dynamics. In this paper, we identify and address this challenges by emphasizing that spatial features are inherently dynamic and change over time. A novel in-depth feature representation, called Dynamic Spatio-Temporal (Dyn-ST) features, is introduced, which encapsulates spatial characteristics across varying times. Moreover, a Dynamic Spatio-Temporal Graph Transformer Network (DST-GTN) is proposed by capturing Dyn-ST features and other dynamic adjacency relations between intersections. The DST-GTN can model dynamic ST relationships between nodes accurately and refine the representation of global and local ST characteristics by adopting adaptive weights in low-pass and all-pass filters, enabling the extraction of Dyn-ST features from traffic time-series data. Through numerical experiments on public datasets, the DST-GTN achieves state-of-the-art performance for a range of traffic forecasting tasks and demonstrates enhanced stability.
·arxiv.org·
DST-GTN: Dynamic Spatio-Temporal Graph Transformer Network for Traffic Forecasting
GraphGPT
GraphGPT
🌟GraphGPT🌟 (385 stars in GitHub) is accepted by 🌟SIGIR'24🌟 (only 20.1% acceptance rate)! Thank Yuhao Yang, wei wei, and other co-authors for their precious…
GraphGPT
·linkedin.com·
GraphGPT
Exploring the Potential of Large Language Models in Graph Generation
Exploring the Potential of Large Language Models in Graph Generation
Large language models (LLMs) have achieved great success in many fields, and recent works have studied exploring LLMs for graph discriminative tasks such as node classification. However, the abilities of LLMs for graph generation remain unexplored in the literature. Graph generation requires the LLM to generate graphs with given properties, which has valuable real-world applications such as drug discovery, while tends to be more challenging. In this paper, we propose LLM4GraphGen to explore the ability of LLMs for graph generation with systematical task designs and extensive experiments. Specifically, we propose several tasks tailored with comprehensive experiments to address key questions regarding LLMs' understanding of different graph structure rules, their ability to capture structural type distributions, and their utilization of domain knowledge for property-based graph generation. Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks, including rule-based and distribution-based generation. We also observe that popular prompting methods, such as few-shot and chain-of-thought prompting, do not consistently enhance performance. Besides, LLMs show potential in generating molecules with specific properties. These findings may serve as foundations for designing good LLMs based models for graph generation and provide valuable insights and further research.
·arxiv.org·
Exploring the Potential of Large Language Models in Graph Generation
OpenGraph: Open-Vocabulary Hierarchical 3D Graph Representation in Large-Scale Outdoor Environments
OpenGraph: Open-Vocabulary Hierarchical 3D Graph Representation in Large-Scale Outdoor Environments
Environment maps endowed with sophisticated semantics are pivotal for facilitating seamless interaction between robots and humans, enabling them to effectively carry out various tasks. Open-vocabulary maps, powered by Visual-Language models (VLMs), possess inherent advantages, including multimodal retrieval and open-set classes. However, existing open-vocabulary maps are constrained to closed indoor scenarios and VLM features, thereby diminishing their usability and inference capabilities. Moreover, the absence of topological relationships further complicates the accurate querying of specific instances. In this work, we propose OpenGraph, a representation of open-vocabulary hierarchical graph structure designed for large-scale outdoor environments. OpenGraph initially extracts instances and their captions from visual images using 2D foundation models, encoding the captions with features to enhance textual reasoning. Subsequently, 3D incremental panoramic mapping with feature embedding is achieved by projecting images onto LiDAR point clouds. Finally, the environment is segmented based on lane graph connectivity to construct a hierarchical graph. Validation results from real public dataset SemanticKITTI demonstrate that, even without fine-tuning the models, OpenGraph exhibits the ability to generalize to novel semantic classes and achieve the highest segmentation and query accuracy. The source code of OpenGraph is publicly available at https://github.com/BIT-DYN/OpenGraph.
·arxiv.org·
OpenGraph: Open-Vocabulary Hierarchical 3D Graph Representation in Large-Scale Outdoor Environments
Personalized Audiobook Recommendations at Spotify Through Graph Neural Networks
Personalized Audiobook Recommendations at Spotify Through Graph Neural Networks
In the ever-evolving digital audio landscape, Spotify, well-known for its music and talk content, has recently introduced audiobooks to its vast user base. While promising, this move presents significant challenges for personalized recommendations. Unlike music and podcasts, audiobooks, initially available for a fee, cannot be easily skimmed before purchase, posing higher stakes for the relevance of recommendations. Furthermore, introducing a new content type into an existing platform confronts extreme data sparsity, as most users are unfamiliar with this new content type. Lastly, recommending content to millions of users requires the model to react fast and be scalable. To address these challenges, we leverage podcast and music user preferences and introduce 2T-HGNN, a scalable recommendation system comprising Heterogeneous Graph Neural Networks (HGNNs) and a Two Tower (2T) model. This novel approach uncovers nuanced item relationships while ensuring low latency and complexity. We decouple users from the HGNN graph and propose an innovative multi-link neighbor sampler. These choices, together with the 2T component, significantly reduce the complexity of the HGNN model. Empirical evaluations involving millions of users show significant improvement in the quality of personalized recommendations, resulting in a +46% increase in new audiobooks start rate and a +23% boost in streaming rates. Intriguingly, our model's impact extends beyond audiobooks, benefiting established products like podcasts.
·arxiv.org·
Personalized Audiobook Recommendations at Spotify Through Graph Neural Networks
Why do LangChain and Autogen use graphs? Here are the top reasons
Why do LangChain and Autogen use graphs? Here are the top reasons
LLM frameworks like LangChain are moving towards a graph-based approach for handling their workflows. This represents the initial steps of a much larger… | 90 comments on LinkedIn
Why do LangChain and Autogen use graphs? Here are the top reasons
·linkedin.com·
Why do LangChain and Autogen use graphs? Here are the top reasons
Language, Graphs, and AI in Industry
Language, Graphs, and AI in Industry
Over the past 5 years, news about AI has been filled with amazing research – at first focused on graph neural networks (GNNs) and more recently about large language models (LLMs). Understand that business tends to use connected data – networks, graphs – whether you’re untangling supply networks in Manufacturing, working on drug discovery for Pharma, or mitigating fraud in Finance. Starting from supplier agreements, bill of materials, internal process docs, sales contracts, etc., there’s a graph inside nearly every business process, one that is defined by language. This talk addresses how to leverage both natural language and graph technologies together for AI applications in industry. We’ll look at how LLMs get used to build and augment graphs, and conversely how graph data gets used to ground LLMs for generative AI use cases in industry – where a kind of “virtuous cycle” is emerging for feedback loops based on graph data. Our team has been engaged, on the one hand, with enterprise use cases in manufacturing. On the other hand we’ve worked as intermediaries between research teams funded by enterprise and open source projects needed by enterprise – particularly in the open source ecosystem for AI models. Also, there are caveats; this work is not simple. Translating from latest research into production-ready code is especially complex and expensive. Let’s examine caveats which other teams should understand, and look toward practical examples.
·derwen.ai·
Language, Graphs, and AI in Industry
Let Your Graph Do the Talking: Encoding Structured Data for LLMs
Let Your Graph Do the Talking: Encoding Structured Data for LLMs
𝗟𝗲𝘁 𝘆𝗼𝘂𝗿 𝗱𝗮𝘁𝗮 𝘀𝗽𝗲𝗮𝗸! Inject structured data directly with GraphTokens and supercharge your LLM's reasoning abilities. Our exciting research is… | 16 comments on LinkedIn
·linkedin.com·
Let Your Graph Do the Talking: Encoding Structured Data for LLMs
The Intersection of Graphs and Language Models
The Intersection of Graphs and Language Models
The Intersection of Graphs and Language Models 🔲 ⚫ Large language models (LLMs) have rapidly advanced, displaying impressive abilities in comprehending… | 27 comments on LinkedIn
The Intersection of Graphs and Language Models
·linkedin.com·
The Intersection of Graphs and Language Models
LangGraph: Multi-Agent Workflows
LangGraph: Multi-Agent Workflows
Links * Python Examples * JS Examples * YouTube Last week we highlighted LangGraph - a new package (available in both Python and JS) to better enable creation of LLM workflows containing cycles, which are a critical component of most agent runtimes. As a part of the launch, we highlighted two simple runtimes:
a second set of use cases for langgraph - multi-agent workflows. In this blog we will cover:What does "multi-agent" mean?Why are "multi-agent" workflows interesting?Three concrete examples of using LangGraph for multi-agent workflowsTwo examples of third-party applications built on top of LangGraph using multi-agent workflows (GPT-Newspaper and CrewAI)Comparison to other frameworks (Autogen and CrewAI)
·blog.langchain.dev·
LangGraph: Multi-Agent Workflows
🦜🕸️LangGraph | 🦜️🔗 Langchain
🦜🕸️LangGraph | 🦜️🔗 Langchain
⚡ Building language agents as graphs ⚡
🦜🕸️LangGraph⚡ Building language agents as graphs ⚡Overview​LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner. It is inspired by Pregel and Apache Beam. The current interface exposed is one inspired by NetworkX.The main use is for adding cycles to your LLM application. Crucially, this is NOT a DAG framework. If you want to build a DAG, you should use just use LangChain Expression Language.Cycles are important for agent-like behaviors, where you call an LLM in a loop, asking it what action to take next.
·python.langchain.com·
🦜🕸️LangGraph | 🦜️🔗 Langchain
Graph & Geometric ML in 2024: Where We Are and What’s Next (Part I — Theory & Architectures)
Graph & Geometric ML in 2024: Where We Are and What’s Next (Part I — Theory & Architectures)
Trends and recent advancements in Graph and Geometric Deep Learning
Following the tradition from previous years, we interviewed a cohort of distinguished and prolific academic and industrial experts in an attempt to summarise the highlights of the past year and predict what is in store for 2024. Past 2023 was so ripe with results that we had to break this post into two parts. This is Part I focusing on theory & new architectures,
·towardsdatascience.com·
Graph & Geometric ML in 2024: Where We Are and What’s Next (Part I — Theory & Architectures)
pacoid (Paco Xander Nathan)
pacoid (Paco Xander Nathan)
Python open source projects; natural language meets graph technologies; graph topological transformations; graph levels of detail (abstraction layers)
·huggingface.co·
pacoid (Paco Xander Nathan)