Found 136 bookmarks
Newest
Michael Bronstein on Twitter
Michael Bronstein on Twitter
We kicked off our #NeurIPS2020 series joined by @TacoCohen, ML Researcher at @Qualcomm @Qualcomm_Tech, to discuss his current research in equivariant networks and video compression using generative models, as well as his paper “Natural Graph Networks.”— The TWIML AI Podcast (@twimlai) December 22, 2020
·twitter.com·
Michael Bronstein on Twitter
TopQuadrant on Twitter
TopQuadrant on Twitter
TopQuadrant CEO, Irene Polikoff, provides an overview of the two main graph models along with illustrations of their similarities and differences in graph diagrams in Part I of II in this article series from @TDAN_com https://t.co/CxOrTb3ELL#knowledgegraphs #datagovernance— TopQuadrant (@TopQuadrant) September 25, 2020
·twitter.com·
TopQuadrant on Twitter
stephen mallette on Twitter
stephen mallette on Twitter
I'll be discussing "Graph Queries with Gremlin Language Variants" at the Category Theory and Applications group meetup on October 6: https://t.co/MG1HpNEiGd Be prepared to see Gremlin in many different forms! #graphdb pic.twitter.com/OIOsfLvWze— stephen mallette (@spmallette) September 28, 2020
·twitter.com·
stephen mallette on Twitter
Moving Toward Smarter Data: Graph Databases and Machine Learning - DZone Database
Moving Toward Smarter Data: Graph Databases and Machine Learning - DZone Database
When we used to think about data, it was most often in regard to where data was going to be stored and how we would manage it. Yes, files worked for a while, but when manipulating data became an important business priority across industries, the “file” solution didn’t work so well anymore. To meet these increasing demands, applications were designed and developed, addressing data storage and manipulation needs simultaneously — thus, the “database” was born. Today, data is viewed quite differently. Beyond data manipulation, organizations are focusing on mining their data for more visibility into and a deeper understanding of the intelligence within that data. Utilizing the insights acquired from their data to help make informed business decisions is a key priority for business leaders and a major concern in the development, evolution, and adoption of database solutions. A new term emerged in the industry — digital assets. That data the world has been obsessing over.
·dzone.com·
Moving Toward Smarter Data: Graph Databases and Machine Learning - DZone Database
Do Graph Databases Scale? - DZone Big Data
Do Graph Databases Scale? - DZone Big Data
Graph Databases are a great solution for many modern use cases: Fraud Detection, Knowledge Graphs, Asset Management, Recommendation Engines, IoT, Permission Management … you name it.  All such projects benefit from a database technology capable of analyzing highly connected data points and their relations fast – Graph databases are designed for these tasks. But the nature of graph data poses challenges when it comes to *buzzword alert* scalability. So why is this, and are graph databases capable of scaling? Let’s see... In the following, we will define what we mean by scaling, take a closer look at two challenges potentially hindering scaling with graph databases, and discuss solutions currently available. What Is the “Scalability of Graph Databases”? Let’s quickly define what we mean here by scaling, as it is not “just” putting more data on one machine or throwing it on various ones. What you want when working with large or growing datasets is also an acceptabl
·dzone.com·
Do Graph Databases Scale? - DZone Big Data
Graph Databases: The Key to Groundbreaking Medical Research
Graph Databases: The Key to Groundbreaking Medical Research
Neo4j’s Alicia Frame explains how life science researchers can exploit graph databases to get truly granular insight into big data to make major leaps forward in medical research.Complex data sets hold the key to advancing medical breakthroughs. These data sets tend to be voluminous and heterogeneous by nature, presenting an insurmountable challenge for traditional data analysis methods as they struggle to link patterns and outcomes. The unfortunate consequence is a slowdown in the progress of research.Anyone who works in life sciences is aware that they are working with highly connected information; the challenge is making sense of these connections. Unfortunately, many scientists are still using relational databases and spreadsheets which makes mapping important patterns and connections unintuitive and difficult, if not impossible.Graph technologyGraph technology is emerging as an enabler for researchers to trawl gargantuan amounts of unstructured data, turning it into valuab
·pharmafield.co.uk·
Graph Databases: The Key to Groundbreaking Medical Research
Extracting Synonyms from Knowledge Graphs
Extracting Synonyms from Knowledge Graphs
based search systems do not reflect the semantics of individual input words of search queries. For example, a query for the word “house” would not return records for the words “building” or “real estate”. How can such relationships be represented in a technical system? One approach is to include synonyms. Search engines like Elasticsearch provide methods to integrate synonym lists. However, a list of synonyms itself is required for configuration.
·dice-research.org·
Extracting Synonyms from Knowledge Graphs
Announcing Neo4j for Graph Data Science
Announcing Neo4j for Graph Data Science
grade features and scale. We appreciate your candid stories and collaboration, and we’ve used this to create a better solution. As such, we’re excited to announce Neo4j for Graph Data Science™, the first data science environment built to harness the predictive power of relationships for enterprise deployments. Neo4j for Graph Data Science is an ecosystem of tools that includes: With Neo4j for Graph Data Science, data scientists are empowered to confide
·neo4j.com·
Announcing Neo4j for Graph Data Science
Science Forum: Wikidata as a knowledge graph for the life sciences
Science Forum: Wikidata as a knowledge graph for the life sciences
based diagnosis of disease, and drug repurposing. Integrating data and knowledge is a formidable challenge in biomedical research. Although new scientific findings are being discovered at a rapid pace, a large proportion of that knowledge is either locked in data silos (where integration is hindered by differing nomenclature, data models, and lice
·elifesciences.org·
Science Forum: Wikidata as a knowledge graph for the life sciences
CS 520: Knowledge Graphs
CS 520: Knowledge Graphs
Knowledge graphs have emerged as a compelling abstraction for organizing world's structured knowledge over the internet, capturing relationships among key entities of interest to enterprises, and a way to integrate information extracted from multiple data sources. Knowledge graphs have also started to play a central role in machine learning and natural language processing as a method to incorporate world knowledge, as a target knowledge representation for extracted knowledge, and for explaining what is being learned. This class is a graduate level research seminar featuring prominent researchers and industry practitioners working on different aspects of knowledge graphs. It will showcase how latest research in AI, database systems and HCI is coming together in integrated intelligent systems centered around knowledge graphs.The seminar will be offered over Zoom as per the planned schedule.The seminar is open to public. Remote participants may join the seminar through Zoom. To be
·web.stanford.edu·
CS 520: Knowledge Graphs
The Future of the Intelligent Application: Why Graph Technology Is Key
The Future of the Intelligent Application: Why Graph Technology Is Key
Data, AI, intelligent applications. They’re no longer separate topics, or even separate conferences. O’Reilly announced that it is merging its data and AI conferences, saying, “Data feeds AI; AI makes sense of data.” Further, both power applications. In 2016, Ben Lorica – then program chair of the O’Reilly Strata Data and AI Conferences – predicted that soon “some features of AI will be incorporated into every application that we touch, and we won’t be able to do anything without touching an application.”
·neo4j.com·
The Future of the Intelligent Application: Why Graph Technology Is Key
Meet SemSpect: A Different Approach to Graph Visualization [Community Post]
Meet SemSpect: A Different Approach to Graph Visualization [Community Post]
Discover a new way to visualize and explore your connected data with SemSpect: a unique approach to graph visualization that doesn't depend on using random or best-guess Cypher queries in order to explore your data's meta-graph and that is compatible with Neo4j (including RDF datasets).
·neo4j.com·
Meet SemSpect: A Different Approach to Graph Visualization [Community Post]
Whaddya mean, 'niche'?! Neo4j's chief scientist schools El Reg on graph databases • The Register
Whaddya mean, 'niche'?! Neo4j's chief scientist schools El Reg on graph databases • The Register
Graphs are a general-purpose #datamodel, as relational was a general-purpose #data model a generation ago. A supply chain is a graph. Knowledge is a graph. Graphs are very applicable in a wide range of use cases @jimwebber @TheRegister #GraphDB #tech [LINK]https://www.theregister.co.uk/2020/02/05/graph_database_neo4j_chief_scientist/ [LINK]https://regmedia.co.uk/2016/04/26/graph_database.jpg
·theregister.co.uk·
Whaddya mean, 'niche'?! Neo4j's chief scientist schools El Reg on graph databases • The Register