Found 456 bookmarks
Newest
Introducing MechGPT: 1) fine-tuning an LLM, and 2) generating a knowledge graph
Introducing MechGPT: 1) fine-tuning an LLM, and 2) generating a knowledge graph
Introducing MechGPT 🦾🤖 This project by Markus J. Buehler is one of the coolest use cases of 1) fine-tuning an LLM, and 2) generating a knowledge graph that… | 33 comments on LinkedIn
Introducing MechGPT 🦾🤖This project by Markus J. Buehler is one of the coolest use cases of 1) fine-tuning an LLM, and 2) generating a knowledge graph that we’ve seen (powered by LlamaIndex
·linkedin.com·
Introducing MechGPT: 1) fine-tuning an LLM, and 2) generating a knowledge graph
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning
Large language models (LLMs) have demonstrated impressive reasoning abilities in complex tasks. However, they lack up-to-date knowledge and experience hallucinations during reasoning, which can lead to incorrect reasoning processes and diminish their performance and trustworthiness. Knowledge graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. Nevertheless, existing KG-based LLM reasoning methods only treat KGs as factual knowledge bases and overlook the importance of their structural information for reasoning. In this paper, we propose a novel method called reasoning on graphs (RoG) that synergizes LLMs with KGs to enable faithful and interpretable reasoning. Specifically, we present a planning-retrieval-reasoning framework, where RoG first generates relation paths grounded by KGs as faithful plans. These plans are then used to retrieve valid reasoning paths from the KGs for LLMs to conduct faithful reasoning. Furthermore, RoG not only distills knowledge from KGs to improve the reasoning ability of LLMs through training but also allows seamless integration with any arbitrary LLMs during inference. Extensive experiments on two benchmark KGQA datasets demonstrate that RoG achieves state-of-the-art performance on KG reasoning tasks and generates faithful and interpretable reasoning results.
·arxiv.org·
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning
Working on a LangChain template that adds a custom graph conversational memory to the Neo4j Cypher chain
Working on a LangChain template that adds a custom graph conversational memory to the Neo4j Cypher chain
Working on a LangChain template that adds a custom graph conversational memory to the Neo4j Cypher chain, which uses LLMs to generate Cypher statements. This…
Working on a LangChain template that adds a custom graph conversational memory to the Neo4j Cypher chain
·linkedin.com·
Working on a LangChain template that adds a custom graph conversational memory to the Neo4j Cypher chain
Charting the Graphical Roadmap to Smarter AI
Charting the Graphical Roadmap to Smarter AI
Subscribe • Previous Issues Boosting LLMs with External Knowledge: The Case for Knowledge Graphs When we wrote our post on Graph Intelligence in early 2022, our goal was to highlight techniques for deriving insights about relationships and connections from structured data using graph analytics and machine learning. We focused mainly on business intelligence and machine learning applications, showcasing how technology companies were applying graph neural networks (GNNs) in areas like recommendations and fraud detection.
·gradientflow.substack.com·
Charting the Graphical Roadmap to Smarter AI
TacticAI: an AI assistant for football tactics using Graph AI
TacticAI: an AI assistant for football tactics using Graph AI
"TacticAI: an AI assistant for football tactics" by Zhe W., Petar Veličković, Daniel Hennes, Nenad Tomašev, Laurel Prince, Yoram Bachrach, Romuald Elie, Kevin… | 28 comments on LinkedIn
TacticAI: an AI assistant for football tactics
·linkedin.com·
TacticAI: an AI assistant for football tactics using Graph AI
Graph of Thoughts: Solving Elaborate Problems with Large Language Models
Graph of Thoughts: Solving Elaborate Problems with Large Language Models
We introduce Graph of Thoughts (GoT): a framework that advances prompting capabilities in large language models (LLMs) beyond those offered by paradigms such as Chain-of-Thought or Tree of Thoughts (ToT). The key idea and primary advantage of GoT is the ability to model the information generated by an LLM as an arbitrary graph, where units of information ("LLM thoughts") are vertices, and edges correspond to dependencies between these vertices. This approach enables combining arbitrary LLM thoughts into synergistic outcomes, distilling the essence of whole networks of thoughts, or enhancing thoughts using feedback loops. We illustrate that GoT offers advantages over state of the art on different tasks, for example increasing the quality of sorting by 62% over ToT, while simultaneously reducing costs by 31%. We ensure that GoT is extensible with new thought transformations and thus can be used to spearhead new prompting schemes. This work brings the LLM reasoning closer to human thinking or brain mechanisms such as recurrence, both of which form complex networks.
·arxiv.org·
Graph of Thoughts: Solving Elaborate Problems with Large Language Models
Vector databases vs Graph databases
Vector databases vs Graph databases
Graph Databases should be the better choice for Retrieval Augmented Generation (RAG)! We have seen the debate RAG vs fine-tuning, but what about Vector… | 37 comments on LinkedIn
Vector databases vs Graph databases
·linkedin.com·
Vector databases vs Graph databases
Graph Instruction Tuning for Large Language Models
Graph Instruction Tuning for Large Language Models
🔥 Let #LLM understand graphs directly? GraphGPT made it! 📢 GraphGPT is a Graph Large Language Model, which aligns Large Language Models (LLMs) with Graphs…
·linkedin.com·
Graph Instruction Tuning for Large Language Models
Vectors need Graphs!
Vectors need Graphs!
Vectors need Graphs! Embedding vectors are a pivotal tool when using Generative AI. While vectors might initially seem an unlikely partner to graphs, their… | 61 comments on LinkedIn
Vectors need Graphs!
·linkedin.com·
Vectors need Graphs!
Constructing knowledge graphs from text using OpenAI functions: Leveraging knowledge graphs to power LangChain Applications
Constructing knowledge graphs from text using OpenAI functions: Leveraging knowledge graphs to power LangChain Applications
Editor's Note: This post was written by Tomaz Bratanic from the Neo4j team. Extracting structured information from unstructured data like text has been around for some time and is nothing new. However, LLMs brought a significant shift to the field of information extraction. If before you needed a team of
·blog.langchain.dev·
Constructing knowledge graphs from text using OpenAI functions: Leveraging knowledge graphs to power LangChain Applications
Overcoming the "Reversal Curse" in LLMs with Ontologies
Overcoming the "Reversal Curse" in LLMs with Ontologies
Overcoming the "Reversal Curse" in LLMs with Ontologies: The "Reversal Curse" is a term coined in a recent paper to describe a particular failure of… | 108 comments on LinkedIn
Overcoming the "Reversal Curse" in LLMs with Ontologies
·linkedin.com·
Overcoming the "Reversal Curse" in LLMs with Ontologies
Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models
Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models
🚀 Exciting News: Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models! 📊🧠 We are thrilled to unveil our… | 42 comments on LinkedIn
Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models
·linkedin.com·
Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models