Found 856 bookmarks
Newest
Learning SPARQL on Twitter
Learning SPARQL on Twitter
Just added >11M #OpenCitations to #COCI, for an overall amount of >733M citations currently available in our dataset – it can be queried via #REST API & #SPARQL endpoint and can be fully downloaded as a dump (available on #Figshare)+info at https://t.co/nxSlZGkb3G #OpenScience pic.twitter.com/FZhHYN782y— OpenCitations (@opencitations) September 7, 2020
·twitter.com·
Learning SPARQL on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Rule-Guided Graph Neural Networks for Recommender Systems https://t.co/Rt2TRzVllt pic.twitter.com/52A8tvKNz5— Aaron Bradley (@aaranged) September 10, 2020
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
"Pixie is one of Pinterest’s major recommendation systems used for fetching relevant Pins. Pixie is composed of a bipartite graph of all Pins and boards on Pinterest." https://t.co/Ng5PszF07x— Aaron Bradley (@aaranged) September 11, 2020
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
"In RDF, properties cannot be directly associated with edges. How would we represent something like [an LPG labeled edge] in RDF? In fact there are multiple ways of modeling this. A common approach is reification." @chrismungall https://t.co/0MQxFomSvX— Aaron Bradley (@aaranged) September 11, 2020
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
GeoSPARQL+: Syntax, Semantics and System for Integrated Querying of Graph, Raster and Vector Data - Technical Report / @situxxx, @ststaab, Daniel Janke https://t.co/qrsPikb9U0 pic.twitter.com/dQ7qdzP26O— Aaron Bradley (@aaranged) September 11, 2020
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Speaking of personalized knowledge graphs....Knowledge Graphs to Empower Humanity-inspired AI Systems @hemant_pt, Valerie Shalin, @amit_p https://t.co/7gYiAxNHhU pic.twitter.com/bVccm8IxCK— Aaron Bradley (@aaranged) September 16, 2020
·twitter.com·
Aaron Bradley on Twitter
Dan Brickley on Twitter
Dan Brickley on Twitter
@davidebus is delivering a brilliant keynote at DeepOntoNLP (https://t.co/XYE99QzEgB) about of role of #NLP and #DeepLearning in the generation of the #Artificial #Intelligence #KnowledgeGraph (AI-KG, https://t.co/rH7MgH7e89) from research publications. pic.twitter.com/SkWhpx6IUg— Francesco Osborne (@FraOsborne) September 16, 2020
·twitter.com·
Dan Brickley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Type-augmented Relation Prediction in Knowledge Graphs https://t.co/aKqGI7S3GW pic.twitter.com/2PgPhEVvTJ— Aaron Bradley (@aaranged) September 18, 2020
·twitter.com·
Aaron Bradley on Twitter
stephen mallette on Twitter
stephen mallette on Twitter
This "Load balance graph queries using the Amazon Neptune Gremlin Client" blog post is a nice body of work covering a more advanced topic than is typically seen in the TinkerPop community. https://t.co/4mJVRxENwL #graphdb pic.twitter.com/d94tOwUaQB— stephen mallette (@spmallette) September 17, 2020
·twitter.com·
stephen mallette on Twitter
Sergey Ivanov on Twitter
Sergey Ivanov on Twitter
This year we organize Graph ML track at Data Fest 2020. It's like a workshop at the conference, but more informal. We will have videos from amazing speakers and also networking, where you can talk to me, speakers, or other people who are interested in graph machine learning. pic.twitter.com/kTrJsc7ca2— Sergey Ivanov (@SergeyI49013776) September 17, 2020
·twitter.com·
Sergey Ivanov on Twitter
Graph Day on Twitter
Graph Day on Twitter
Industry Applications of Network Science and Graph Algorithms : from @Tamer_Khraisha https://t.co/i4RbHEVokk#networkscience #graphalgorithms #graphdatabase #graphtheory #graphdatabase pic.twitter.com/KktQ4GGmyc— Graph Day (@GraphDay) September 16, 2020
·twitter.com·
Graph Day on Twitter
Graph Day on Twitter
Graph Day on Twitter
Knowledge Graphs and Big Data Processing : From @ValentinaJanev @hajiraajabeen @DGraux Emanuel Sallingerhttps://t.co/2hLlLXwZ1l#knowledgegraphs #bigdata #graphdatabase #graphdatabases #knowledgegraph pic.twitter.com/Mo46l3yj4p— Graph Day (@GraphDay) September 16, 2020
·twitter.com·
Graph Day on Twitter
WikiResearch on Twitter
WikiResearch on Twitter
"Covid-on-the-Web: Knowledge Graph and Services toAdvance COVID-19 Research" a dataset comprising twomain knowledge graphs, including named entities linked to @DBpedia, @Wikidata and other @BioPortal vocabularies.(Michel et al, 2020)https://t.co/iZJH9Y2PpV pic.twitter.com/7hY0QpUQfv— WikiResearch (@WikiResearch) September 21, 2020
·twitter.com·
WikiResearch on Twitter
WikiResearch on Twitter
WikiResearch on Twitter
The Research team at the @Wikimedia Foundation will give an overview on the first draft of the taxonomy of knowledge gaps in Wikimedia projects. You can read more about the taxonomy here: https://t.co/8eAj6mpvIP pic.twitter.com/P4p29vJO7i— WikiResearch (@WikiResearch) September 22, 2020
·twitter.com·
WikiResearch on Twitter
gremlify.com on Twitter
gremlify.com on Twitter
Use #gremlin to find the shortest path between nodes in a #graph. Checkout this Gremlify workspace:#graphdb #gremlinhttps://t.co/qYZb5EbaVL— gremlify.com (@gremlify) September 24, 2020
·twitter.com·
gremlify.com on Twitter
Olaf Hartig on Twitter
Olaf Hartig on Twitter
Cool! RDF* support in Neo4j's RDF plug in. https://t.co/f7t2Iyo8rY— Olaf Hartig (@olafhartig) September 24, 2020
·twitter.com·
Olaf Hartig on Twitter
Synaptica LLC on Twitter
Synaptica LLC on Twitter
Finding buried treasure: article on the role of graph databases in HR & HCM (Human Capital Management) #KnowledgeGraphs#Datahttps://t.co/pZB7PuDco9 pic.twitter.com/mQqH2Drhqy— Synaptica LLC (@Synaptica) September 25, 2020
·twitter.com·
Synaptica LLC on Twitter
TopQuadrant on Twitter
TopQuadrant on Twitter
TopQuadrant CEO, Irene Polikoff, provides an overview of the two main graph models along with illustrations of their similarities and differences in graph diagrams in Part I of II in this article series from @TDAN_com https://t.co/CxOrTb3ELL#knowledgegraphs #datagovernance— TopQuadrant (@TopQuadrant) September 25, 2020
·twitter.com·
TopQuadrant on Twitter
Frank Dellaert on Twitter
Frank Dellaert on Twitter
“My post on Mount Rainier’s Laplacian (https://t.co/ONdkZJdayX) is a 101 intro to aspects of spectral graph theory. This great talk by @mmbronstein shows how this theory also forms the basis of deep learning on graph-like structures. Read at least 5 papers today because of it. https://t.co/eMsV9...
·twitter.com·
Frank Dellaert on Twitter
stephen mallette on Twitter
stephen mallette on Twitter
I'll be discussing "Graph Queries with Gremlin Language Variants" at the Category Theory and Applications group meetup on October 6: https://t.co/MG1HpNEiGd Be prepared to see Gremlin in many different forms! #graphdb pic.twitter.com/OIOsfLvWze— stephen mallette (@spmallette) September 28, 2020
·twitter.com·
stephen mallette on Twitter
Alan Morrison on Twitter
Alan Morrison on Twitter
"Therefore, the job of data scientists is to decode the data and to find the knowledge encoded in the data—i.e., to find the model in the data, because the data is the model." - @KirkDBorne, @BoozAllen https://t.co/sZJzBkiA1p pic.twitter.com/NpKaDLLUuL— Kirk Borne (@KirkDBorne) September 28, 2020
·twitter.com·
Alan Morrison on Twitter
WikiResearch on Twitter
WikiResearch on Twitter
😉Happy to share our work on multi-hop (open-domain) QA (https://t.co/7BhmCqX64m). TL;DR: you don't need the Wikipedia hyperlinks to achieve SoTA performance on HotpotQA(@qi2peng2 )! A shared RoBERTa encoder (for both Q and docs) is all you need to retrieve SP passages! 1/3 pic.twitter.com/B9JO85Vd1l— Wenhan Xiong (@xwhan_) September 29, 2020
·twitter.com·
WikiResearch on Twitter
Learning SPARQL on Twitter
Learning SPARQL on Twitter
Interesting paper on which parts of SPARQL query language are easier or more difficult to understand: https://t.co/TgWNXFrCfv— Learning SPARQL (@LearningSPARQL) September 29, 2020
·twitter.com·
Learning SPARQL on Twitter
Klaus Illmayer on Twitter
Klaus Illmayer on Twitter
Everything you always wanted to know but never dared to ask about #knowledgeGraphs:On Oct. 27, 2020, our new free online course "Knowledge Graphs" with @lysander07 and @em_alam will start on the @openHPI platform. Register now at https://t.co/UA9XxTOO3O pic.twitter.com/V6YGkV5Pu4— Harald Sack (@lysander07) September 12, 2020
·twitter.com·
Klaus Illmayer on Twitter
Kelvin Lawrence on Twitter
Kelvin Lawrence on Twitter
Lots of very good material here. Covers a lot of ground including Amazon Neptune, performance tuning, data modeling, common use cases and also some @apachetinkerpop Gremlin and @w3c RDF tutorials. https://t.co/3gdcKcNHiT— Kelvin Lawrence (@gfxman) October 1, 2020
·twitter.com·
Kelvin Lawrence on Twitter
James Le on Twitter
James Le on Twitter
https://t.co/kSTvjW2oBv Such a thoughtful article on #knowledgegraphs! @TDataScience pic.twitter.com/BphubNoYwv— James Le (@le_james94) October 1, 2020
·twitter.com·
James Le on Twitter
Anthony J. Algmin on Twitter
Anthony J. Algmin on Twitter
This current issue of https://t.co/iSEn2yvLfR covers #datagovernance #dataestate #data's #gendergap #datacatalog #dataestate #knowledgegraphs #DMP ... more. New content from @RSeiner @MandySeiner @AJAlgmin Polikoff of @TopQuadrant Beechum and @HBKI71. https://t.co/EEuVW3g7SG pic.twitter.com/sIL7KvLiJp— TDAN (@TDAN_com) October 1, 2020
·twitter.com·
Anthony J. Algmin on Twitter
Marco Neumann on Twitter
Marco Neumann on Twitter
In case you missed it, the recording of last week's #Lotico session on JSON-LD is now available. https://t.co/Pzlyjh2S89. #jsonld cc/@neumarcx— Gregg Kellogg (@Gkellogg) October 1, 2020
·twitter.com·
Marco Neumann on Twitter