Found 2088 bookmarks
Newest
Knowledge, Data and LLMs
Knowledge, Data and LLMs
Today is a pretty special day. In some sense, this is the day I’ve been waiting for all my life. The day that we figure out how to make…
·medium.com·
Knowledge, Data and LLMs
A word of caution from Netflix against blindly using cosine similarity as a measure of semantic similarity
A word of caution from Netflix against blindly using cosine similarity as a measure of semantic similarity
A word of caution from Netflix against blindly using cosine similarity as a measure of semantic similarity: https://lnkd.in/gX3tR4YK They study linear matrix… | 12 comments on LinkedIn
A word of caution from Netflix against blindly using cosine similarity as a measure of semantic similarity
·linkedin.com·
A word of caution from Netflix against blindly using cosine similarity as a measure of semantic similarity
Tony Seale Knowledge Graph Chatbot
Tony Seale Knowledge Graph Chatbot
I am thrilled to introduce a new AI Study Guide (https://lnkd.in/g4rPZVHW) dedicated to Tony Seale, another of my favorite authors, thought leaders, and…
Knowledge Graph
·linkedin.com·
Tony Seale Knowledge Graph Chatbot
PyGraft: Configurable Generation of Synthetic Schemas and Knowledge Graphs at Your Fingertips
PyGraft: Configurable Generation of Synthetic Schemas and Knowledge Graphs at Your Fingertips
Knowledge graphs (KGs) have emerged as a prominent data representation and management paradigm. Being usually underpinned by a schema (e.g., an ontology), KGs capture not only factual information but also contextual knowledge. In some tasks, a few KGs established themselves as standard benchmarks. However, recent works outline that relying on a limited collection of datasets is not sufficient to assess the generalization capability of an approach. In some data-sensitive fields such as education or medicine, access to public datasets is even more limited. To remedy the aforementioned issues, we release PyGraft, a Python-based tool that generates highly customized, domain-agnostic schemas and KGs. The synthesized schemas encompass various RDFS and OWL constructs, while the synthesized KGs emulate the characteristics and scale of real-world KGs. Logical consistency of the generated resources is ultimately ensured by running a description logic (DL) reasoner. By providing a way of generating both a schema and KG in a single pipeline, PyGraft's aim is to empower the generation of a more diverse array of KGs for benchmarking novel approaches in areas such as graph-based machine learning (ML), or more generally KG processing. In graph-based ML in particular, this should foster a more holistic evaluation of model performance and generalization capability, thereby going beyond the limited collection of available benchmarks. PyGraft is available at: https://github.com/nicolas-hbt/pygraft.
·arxiv.org·
PyGraft: Configurable Generation of Synthetic Schemas and Knowledge Graphs at Your Fingertips
KGLM-Loop: A Bi-Directional Data Flywheel for Knowledge Graph Refinement and Hallucination Detection in Large Language Models
KGLM-Loop: A Bi-Directional Data Flywheel for Knowledge Graph Refinement and Hallucination Detection in Large Language Models
KGLM-Loop: A Bi-Directional Data Flywheel for Knowledge Graph Refinement and Hallucination Detection in Large Language Models ☀ 🌑 In the pursuit of…
KGLM-Loop: A Bi-Directional Data Flywheel for Knowledge Graph Refinement and Hallucination Detection in Large Language Models
·linkedin.com·
KGLM-Loop: A Bi-Directional Data Flywheel for Knowledge Graph Refinement and Hallucination Detection in Large Language Models
Decoding the Semantic Layer
Decoding the Semantic Layer
We've been hearing the term "Semantic layer" without truly understanding the semantics of it. So, here is episode 11 of #DnABytes and today's topic is:…
Decoding the Semantic Layer
·linkedin.com·
Decoding the Semantic Layer
Telecom GenAI based Network Operations: The Integration of LLMs, GraphRAG, Reinforcement Learning, and Scoring Models
Telecom GenAI based Network Operations: The Integration of LLMs, GraphRAG, Reinforcement Learning, and Scoring Models
Telecom GenAI based Network Operations: The Integration of LLMs, GraphRAG, Reinforcement Learning, and Scoring Models With the increasing complexity of… | 12 comments on LinkedIn
Telecom GenAI based Network Operations: The Integration of LLMs, GraphRAG, Reinforcement Learning, and Scoring Models
·linkedin.com·
Telecom GenAI based Network Operations: The Integration of LLMs, GraphRAG, Reinforcement Learning, and Scoring Models
Data provenance woth PROV-O
Data provenance woth PROV-O
Data provenance is something people love in theory, but never practice... I have just rewatched an excellent appearance by Jaron Lanier from a couple of… | 52 comments on LinkedIn
Data provenance
·linkedin.com·
Data provenance woth PROV-O
Data provenance with PROV-O
Data provenance with PROV-O
Data provenance is something people love in theory, but never practice... I have just rewatched an excellent appearance by Jaron Lanier from a couple of… | 39 comments on LinkedIn
Data provenance
·linkedin.com·
Data provenance with PROV-O
Relational Harmony and a New Hope for Dimensionality
Relational Harmony and a New Hope for Dimensionality
Relational Harmony and a New Hope for Dimensionality ⛓️ In an era where data complexity escalates and the quest for meaningful technology integration… | 30 comments on LinkedIn
Relational Harmony and a New Hope for Dimensionality
·linkedin.com·
Relational Harmony and a New Hope for Dimensionality
Knowledge Graphs: Today's triples just ain't enough | LinkedIn
Knowledge Graphs: Today's triples just ain't enough | LinkedIn
Knowledge hypergraphs are garnering a lot of attention – and deservedly so. You can find my two previous posts on knowledge hypergraphs and on more adaptive conceptualizations for hypergraphs as well as Kurt Cagle's focused and more practically minded pieces on Hypergraphs and RDF, on Named Graphs (
·linkedin.com·
Knowledge Graphs: Today's triples just ain't enough | LinkedIn
Knowledge Engineering using Large Language Models
Knowledge Engineering using Large Language Models
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.
·arxiv.org·
Knowledge Engineering using Large Language Models
Global Knowledge Graph Market by Offering (Solutions, Services), By Data Source (Structured, Unstructured, Semi-structured), Industry (BFSI, IT & ITeS, Telecom, Healthcare), Model Type, Application, Type and Region - Forecast to 2028
Global Knowledge Graph Market by Offering (Solutions, Services), By Data Source (Structured, Unstructured, Semi-structured), Industry (BFSI, IT & ITeS, Telecom, Healthcare), Model Type, Application, Type and Region - Forecast to 2028
Rapid Growth in Data Volume and Complexity
·researchandmarkets.com·
Global Knowledge Graph Market by Offering (Solutions, Services), By Data Source (Structured, Unstructured, Semi-structured), Industry (BFSI, IT & ITeS, Telecom, Healthcare), Model Type, Application, Type and Region - Forecast to 2028
Chatbot created based on the prolific writings of Mike Dillinger. This chatbot helps you better digest his posts and articles on Knowledge Graphs, Taxonomy, Ontology and their critical roles in getting LLM technology more accurate and practical
Chatbot created based on the prolific writings of Mike Dillinger. This chatbot helps you better digest his posts and articles on Knowledge Graphs, Taxonomy, Ontology and their critical roles in getting LLM technology more accurate and practical
Check out this chatbot (https://lnkd.in/gv8Afk57) that I created entirely based on the prolific writings of Mike Dillinger, PhD . This chatbot helps you better…
created entirely based on the prolific writings of Mike Dillinger, PhD . This chatbot helps you better digest his posts and articles on Knowledge Graphs, Taxonomy, Ontology and their critical roles in getting LLM technology more accurate and practical
·linkedin.com·
Chatbot created based on the prolific writings of Mike Dillinger. This chatbot helps you better digest his posts and articles on Knowledge Graphs, Taxonomy, Ontology and their critical roles in getting LLM technology more accurate and practical
Language, Graphs, and AI in Industry
Language, Graphs, and AI in Industry
Over the past 5 years, news about AI has been filled with amazing research – at first focused on graph neural networks (GNNs) and more recently about large language models (LLMs). Understand that business tends to use connected data – networks, graphs – whether you’re untangling supply networks in Manufacturing, working on drug discovery for Pharma, or mitigating fraud in Finance. Starting from supplier agreements, bill of materials, internal process docs, sales contracts, etc., there’s a graph inside nearly every business process, one that is defined by language. This talk addresses how to leverage both natural language and graph technologies together for AI applications in industry. We’ll look at how LLMs get used to build and augment graphs, and conversely how graph data gets used to ground LLMs for generative AI use cases in industry – where a kind of “virtuous cycle” is emerging for feedback loops based on graph data. Our team has been engaged, on the one hand, with enterprise use cases in manufacturing. On the other hand we’ve worked as intermediaries between research teams funded by enterprise and open source projects needed by enterprise – particularly in the open source ecosystem for AI models. Also, there are caveats; this work is not simple. Translating from latest research into production-ready code is especially complex and expensive. Let’s examine caveats which other teams should understand, and look toward practical examples.
·derwen.ai·
Language, Graphs, and AI in Industry