Found 239 bookmarks
Newest
Knowledge Graphs vs. Property Graphs – Part 1
Knowledge Graphs vs. Property Graphs – Part 1
We are in the era of graphs. Graphs are hot. Why? Flexibility is one strong driver: heterogeneous data, integrating new data sources, and analytics all require flexibility. Graphs deliver it in spades. Over the last few years, a number of new graph databases
·tdan.com·
Knowledge Graphs vs. Property Graphs – Part 1
Do Graph Databases Scale? - DZone Big Data
Do Graph Databases Scale? - DZone Big Data
Graph Databases are a great solution for many modern use cases: Fraud Detection, Knowledge Graphs, Asset Management, Recommendation Engines, IoT, Permission Management … you name it.  All such projects benefit from a database technology capable of analyzing highly connected data points and their relations fast – Graph databases are designed for these tasks. But the nature of graph data poses challenges when it comes to *buzzword alert* scalability. So why is this, and are graph databases capable of scaling? Let’s see... In the following, we will define what we mean by scaling, take a closer look at two challenges potentially hindering scaling with graph databases, and discuss solutions currently available. What Is the “Scalability of Graph Databases”? Let’s quickly define what we mean here by scaling, as it is not “just” putting more data on one machine or throwing it on various ones. What you want when working with large or growing datasets is also an acceptabl
·dzone.com·
Do Graph Databases Scale? - DZone Big Data
Graph Databases: The Key to Groundbreaking Medical Research
Graph Databases: The Key to Groundbreaking Medical Research
Neo4j’s Alicia Frame explains how life science researchers can exploit graph databases to get truly granular insight into big data to make major leaps forward in medical research.Complex data sets hold the key to advancing medical breakthroughs. These data sets tend to be voluminous and heterogeneous by nature, presenting an insurmountable challenge for traditional data analysis methods as they struggle to link patterns and outcomes. The unfortunate consequence is a slowdown in the progress of research.Anyone who works in life sciences is aware that they are working with highly connected information; the challenge is making sense of these connections. Unfortunately, many scientists are still using relational databases and spreadsheets which makes mapping important patterns and connections unintuitive and difficult, if not impossible.Graph technologyGraph technology is emerging as an enabler for researchers to trawl gargantuan amounts of unstructured data, turning it into valuab
·pharmafield.co.uk·
Graph Databases: The Key to Groundbreaking Medical Research
Extracting Synonyms from Knowledge Graphs
Extracting Synonyms from Knowledge Graphs
based search systems do not reflect the semantics of individual input words of search queries. For example, a query for the word “house” would not return records for the words “building” or “real estate”. How can such relationships be represented in a technical system? One approach is to include synonyms. Search engines like Elasticsearch provide methods to integrate synonym lists. However, a list of synonyms itself is required for configuration.
·dice-research.org·
Extracting Synonyms from Knowledge Graphs
GraphLog
GraphLog
the task should accurately quantify the “distribution shift” in the data. Having precise control of this shift could allow us to understand the drawbacks of our learning methods, and build systems which can generalize over multiple tasks but still remember the old ones. Data distribution
·cs.mcgill.ca·
GraphLog
Announcing Neo4j for Graph Data Science
Announcing Neo4j for Graph Data Science
grade features and scale. We appreciate your candid stories and collaboration, and we’ve used this to create a better solution. As such, we’re excited to announce Neo4j for Graph Data Science™, the first data science environment built to harness the predictive power of relationships for enterprise deployments. Neo4j for Graph Data Science is an ecosystem of tools that includes: With Neo4j for Graph Data Science, data scientists are empowered to confide
·neo4j.com·
Announcing Neo4j for Graph Data Science
CS 520: Knowledge Graphs
CS 520: Knowledge Graphs
Knowledge graphs have emerged as a compelling abstraction for organizing world's structured knowledge over the internet, capturing relationships among key entities of interest to enterprises, and a way to integrate information extracted from multiple data sources. Knowledge graphs have also started to play a central role in machine learning and natural language processing as a method to incorporate world knowledge, as a target knowledge representation for extracted knowledge, and for explaining what is being learned. This class is a graduate level research seminar featuring prominent researchers and industry practitioners working on different aspects of knowledge graphs. It will showcase how latest research in AI, database systems and HCI is coming together in integrated intelligent systems centered around knowledge graphs.The seminar will be offered over Zoom as per the planned schedule.The seminar is open to public. Remote participants may join the seminar through Zoom. To be
·web.stanford.edu·
CS 520: Knowledge Graphs
Diego Moussallem retweeted: New from Google Research! REALM: realm.page.link/paper We pretrain an LM that sparsely attends over all of Wikipedia as extra context. We backprop through a latent retrieval step on 13M docs. Yields new SOTA results for open do
Diego Moussallem retweeted: New from Google Research! REALM: realm.page.link/paper We pretrain an LM that sparsely attends over all of Wikipedia as extra context. We backprop through a latent retrieval step on 13M docs. Yields new SOTA results for open do
New from Google Research! REALM: https://t.co/kS2oTyxAAjWe pretrain an LM that sparsely attends over all of Wikipedia as extra context. We backprop through a latent retrieval step on 13M docs. Yields new SOTA results for open domain QA, breaking 40 on NaturalQuestions-Open! pic.twitter.com/DYDFX69Td8— Kelvin Guu (@kelvin_guu) February 11, 2020
·twitter.com·
Diego Moussallem retweeted: New from Google Research! REALM: realm.page.link/paper We pretrain an LM that sparsely attends over all of Wikipedia as extra context. We backprop through a latent retrieval step on 13M docs. Yields new SOTA results for open do
Really Rapid RDF Graph Application Development
Really Rapid RDF Graph Application Development
This article shows how an RDF Graph CRUD application can be rapidly developed, yet without losing the flexibility that HTML5/JavaScript offers, from which it can be concluded that there is no reason preventing the use of RDF Graphs as the backend for production-capable applications.
·inova8.com·
Really Rapid RDF Graph Application Development
Meet SemSpect: A Different Approach to Graph Visualization [Community Post]
Meet SemSpect: A Different Approach to Graph Visualization [Community Post]
Discover a new way to visualize and explore your connected data with SemSpect: a unique approach to graph visualization that doesn't depend on using random or best-guess Cypher queries in order to explore your data's meta-graph and that is compatible with Neo4j (including RDF datasets).
·neo4j.com·
Meet SemSpect: A Different Approach to Graph Visualization [Community Post]