Found 2587 bookmarks
Newest
Ontology Modeling with SHACL: Defining Forms for Instance Data | LinkedIn
Ontology Modeling with SHACL: Defining Forms for Instance Data | LinkedIn
The previous articles of this series, such as Getting Started, have introduced SHACL as a language for representing structural constraints on (knowledge) graphs: classes, attributes, relationships and shapes. These language features describe the formal characteristics that valid instances need to ha
·linkedin.com·
Ontology Modeling with SHACL: Defining Forms for Instance Data | LinkedIn
Better Taxonomies for Better Knowledge Graphs | LinkedIn
Better Taxonomies for Better Knowledge Graphs | LinkedIn
Taxonomies – coherent collections of facts with taxonomic relations – play a crucial and growing role in how we – and AIs – structure and index knowledge. Taken in the context of an "anatomy" of knowledge, taxonomic relations – like instanceOf and subcategoryOf – form the skeleton, a sketchy, incomp
·linkedin.com·
Better Taxonomies for Better Knowledge Graphs | LinkedIn
COST DKG
COST DKG
YouTube channel of the COST Action "Distributed Knowledge Graphs" (DKG). We investigate Knowledge Graphs that are published in a decentralised fashion, thus forming a distributed system. COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. The Action is funded by the Horizon 2020 Framework Programme of the European Union.
·youtube.com·
COST DKG
Understand and Exploit GenAI With Gartner’s New Impact Radar
Understand and Exploit GenAI With Gartner’s New Impact Radar
Use Gartner’s impact radar for generative AI to plan investments and strategy with four key themes in mind: ☑️Model-related innovations ☑️Model performance and AI safety ☑️Model build and data-related ☑️AI-enabled applications Explore all 25 technologies and trends: https://www.gartner.com/en/articles/understand-and-exploit-gen-ai-with-gartner-s-new-impact-radar
·gartner.com·
Understand and Exploit GenAI With Gartner’s New Impact Radar
The Role of the Ontologist in the Age of LLMs
The Role of the Ontologist in the Age of LLMs
What do we mean when we say something is a kind of thing? I’ve been wrestling with that question a great deal of late, partly because I think the role of the ontologist transcends the application of knowledge graphs, especially as I’ve watched LLMs and Llamas become a bigger part of the discussion.
·ontologist.substack.com·
The Role of the Ontologist in the Age of LLMs
Knowledge Engineering Using Large Language Models
Knowledge Engineering Using Large Language Models
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.
·drops.dagstuhl.de·
Knowledge Engineering Using Large Language Models
Polyhierarchy and the Dissolution of Meaning
Polyhierarchy and the Dissolution of Meaning
“Everything is everything/What is meant to be, will be.” – Lauryn Hill Polyhierarchy Polyhierarchy is “a controlled vocabulary structure in which some terms belong to more than one hierarchy.…
·informationpanopticon.blog·
Polyhierarchy and the Dissolution of Meaning
On to Knowledge-infused Language Models
On to Knowledge-infused Language Models
A broad and deep body of on-going research – hundreds of experiments! – has shown quite conclusively that knowledge graphs are essential to guide, complement, and enrich LLMs in systematic ways. The very wide variety of tests over domains and possible combinations of KGs and LLMs attests to the robu
·linkedin.com·
On to Knowledge-infused Language Models
Do Similar Entities have Similar Embeddings?
Do Similar Entities have Similar Embeddings?
Knowledge graph embedding models (KGEMs) developed for link prediction learn vector representations for graph entities, known as embeddings. A common tacit assumption is the KGE entity similarity assumption, which states that these KGEMs retain the graph's structure within their embedding space, i.e., position similar entities close to one another. This desirable property make KGEMs widely used in downstream tasks such as recommender systems or drug repurposing. Yet, the alignment of graph similarity with embedding space similarity has rarely been formally evaluated. Typically, KGEMs are assessed based on their sole link prediction capabilities, using ranked-based metrics such as Hits@K or Mean Rank. This paper challenges the prevailing assumption that entity similarity in the graph is inherently mirrored in the embedding space. Therefore, we conduct extensive experiments to measure the capability of KGEMs to cluster similar entities together, and investigate the nature of the underlying factors. Moreover, we study if different KGEMs expose a different notion of similarity. Datasets, pre-trained embeddings and code are available at: https://github.com/nicolas-hbt/similar-embeddings.
·arxiv.org·
Do Similar Entities have Similar Embeddings?