Found 785 bookmarks
Newest
DSC Weekly Digest 04 Jan 2022: Can Machine Learning Do Symbolic Manipulation? - DataScienceCentral.com
DSC Weekly Digest 04 Jan 2022: Can Machine Learning Do Symbolic Manipulation? - DataScienceCentral.com
Can Machine Learning Do Symbolic Manipulation?  I spent some time over the holidays engaged in a fascinating online conversation. The gist of it was a variation of an argument that has been going on in the realm of artificial intelligence from the time of Minsky and Seymour Papert: Whether it is possible for neural networks to… Read More »DSC Weekly Digest 04 Jan 2022: Can Machine Learning Do Symbolic Manipulation?
·datasciencecentral.com·
DSC Weekly Digest 04 Jan 2022: Can Machine Learning Do Symbolic Manipulation? - DataScienceCentral.com
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Anti-Money Laundering Alert Optimization Using Machine Learning with Graphs https://t.co/e7fQg57Mrt pic.twitter.com/8nZ7QzeUD5— Aaron Bradley (@aaranged) December 15, 2021
·twitter.com·
Aaron Bradley on Twitter
Michael Bronstein on Twitter
Michael Bronstein on Twitter
What if we model a graph as a set of subgraphs instead of a set of interconnected nodes? Hint: expressive power + equivariance! 🧵Joint work by a super team: @beabevi_ * @dereklim_lzh * @balasrini32 @ChenCaiUCSD @gblearning42 @mmbronstein @HaggaiMaronhttps://t.co/6rW4e47RhN pic.twitter.com/Ajl8L5xdDc— Fabrizio Frasca (@ffabffrasca) December 15, 2021
·twitter.com·
Michael Bronstein on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
MedGraph: An experimental semantic information retrieval method using knowledge graph embedding for the biomedical citations indexed in PubMed https://t.co/B3tmoVilDt pic.twitter.com/DvEVoU53ec— Aaron Bradley (@aaranged) December 14, 2021
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Graph-based hierarchical record clustering for unsupervised entity resolution https://t.co/I0saMXcQFL pic.twitter.com/eB7Cphflp3— Aaron Bradley (@aaranged) December 14, 2021
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Embedding knowledge on ontology into the corpus by topic to improve the performance of deep learning methods in sentiment analysis - Scientific Reports https://t.co/W0lKPRCh84 #DL #AI #ML #DeepLearning #ArtificialIntelligence #MachineLearning #ComputerVision #AutonomousVehicles— Deep_In_Depth (@Deep_In_Depth) December 11, 2021
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
UFO: Unified Foundational Ontology / Giancarlo Guizzardi et al. https://t.co/GuTFxstIqV pic.twitter.com/9BJG1GUdIt— Aaron Bradley (@aaranged) December 16, 2021
·twitter.com·
Aaron Bradley on Twitter
TinkerPop on Twitter
TinkerPop on Twitter
G.V() is an all-in-one Gremlin IDE to write, test and analyze results for your TinkerPop-enabled graph database - in open beta now and looking for feedback: https://t.co/0FLK7kC9K9 #graphdb pic.twitter.com/7U8PeKFsm9— TinkerPop (@apachetinkerpop) November 22, 2021
·twitter.com·
TinkerPop on Twitter
Jure Leskovec on Twitter
Jure Leskovec on Twitter
Excited to share our collaboration with @GoogleAI: SMORE is a scalable knowledge graph completion and multi-hop reasoning system that scales to hundreds of millions of entities and relations. @ren_hongyu, @hanjundai, et al.https://t.co/O2xM9iYMjihttps://t.co/BImVmbZAFi pic.twitter.com/H52aFOejkv— Jure Leskovec (@jure) November 1, 2021
·twitter.com·
Jure Leskovec on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Distribution Knowledge Embedding for Graph Pooling https://t.co/YsQBXwbFtZ pic.twitter.com/ZXbpOKDrLC— Aaron Bradley (@aaranged) September 30, 2021
·twitter.com·
Aaron Bradley on Twitter
Petar Veličković on Twitter
Petar Veličković on Twitter
Super nice talk by @matej_zecevic on #Neuro-#Causality and our integration of graph neural networks and structural causal models. 🎞️👉 https://t.co/S2XNuOqZ61 🙏 to @JackccLu for inviting Matej! pic.twitter.com/jamZ20WoGt— Kristian Kersting (@kerstingAIML) September 28, 2021
·twitter.com·
Petar Veličković on Twitter
WikiResearch on Twitter
WikiResearch on Twitter
"SYGMA: System for Generalizable Modular Question Answering Over Knowledge Bases", tested on #DBPedia and #Wikidata + a new Temporal QA benchmarkdataset based on Wikidata.(Neelam et al, 2021)data: https://t.co/0tkY9sjA9Zpaper: https://t.co/rZDw4bW56Q pic.twitter.com/XqFwp2def2— WikiResearch (@WikiResearch) October 6, 2021
·twitter.com·
WikiResearch on Twitter
Ruud Steltenpool🤔🔗📊🚲👨‍👩‍👧‍👧💾🌳 on Twitter
Ruud Steltenpool🤔🔗📊🚲👨‍👩‍👧‍👧💾🌳 on Twitter
Our paper titled "A Survey of #RDF Stores & #SPARQL Engines for Querying Knowledge Graphs" has been accepted to #VLDB Journal. A survey of over 120 RDF stores and #KnowledgeGraphs. https://t.co/SsFroOOBI5 @aidhog @NgongaAxel @akswgroup @DiceResearch pic.twitter.com/o4fiwG1VJq— Muhammad Saleem (@saleem_muhamad) October 3, 2021
·twitter.com·
Ruud Steltenpool🤔🔗📊🚲👨‍👩‍👧‍👧💾🌳 on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Program Transfer and Ontology Awareness for Semantic Parsing in KBQA [Knowledge Base Question Answering] https://t.co/4UHsmhhkRz pic.twitter.com/iTyYwse9Jf— Aaron Bradley (@aaranged) October 13, 2021
·twitter.com·
Aaron Bradley on Twitter
WikiResearch on Twitter
WikiResearch on Twitter
"No Need to Know Everything! Efficiently Augmenting Language Models With External Knowledge" Instead of packing all knowledge in the model, the system provides external Wiki knowledge and trains the model to use that source.(Kaur et al 2021)https://t.co/U3VcZn0XyY@sbhatia_ pic.twitter.com/XNPZj5Neys— WikiResearch (@WikiResearch) October 15, 2021
·twitter.com·
WikiResearch on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Knowledge Graph-enhanced Sampling for Conversational Recommender System https://t.co/LfD8ixZT7K pic.twitter.com/H5HFPYsAXN— Aaron Bradley (@aaranged) October 14, 2021
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Boosting Graph Embedding on a Single GPU https://t.co/ozJ60Kz5Yi pic.twitter.com/XJqPDRNDOK— Aaron Bradley (@aaranged) October 20, 2021
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
"Our knowledge graph form of NOAA climate data facilitates the supply of semantic climate information to researchers and offers a variety of semantic applications that can be built on top of it." https://t.co/2C2ZAUGSJy pic.twitter.com/Z459afns5S— Aaron Bradley (@aaranged) October 20, 2021
·twitter.com·
Aaron Bradley on Twitter
WikiResearch on Twitter
WikiResearch on Twitter
"Language Models As or For Knowledge Bases" a position paper about strengths, limitations and complementarity of language model and knowledge bases.(Razniewski et al, 2021)https://t.co/TZisPy3hHH@maxplanckpress @andrewyates pic.twitter.com/252pQFxwau— WikiResearch (@WikiResearch) October 21, 2021
·twitter.com·
WikiResearch on Twitter
Chris Mungall on Twitter
Chris Mungall on Twitter
Some delayed thoughts on @bobdc's recent post "you probably don't need OWL". Interesting how our different backgrounds lead us to different perspectives, in the life sciences OWL seems more popular for ontologies 1/n https://t.co/LMC8pX176p— Chris Mungall (@chrismungall) October 20, 2021
·twitter.com·
Chris Mungall on Twitter