Found 3954 bookmarks
Newest
Where Semantics and Machine Learning Converge - DataScienceCentral.com
Where Semantics and Machine Learning Converge - DataScienceCentral.com
Artificial Intelligence has a long history of oscillating between two somewhat contradictory poles. On one side, exemplified by Noam Chomsky, Marvin Minsky, Seymour Papert, and many others, is the idea that cognitive intelligence was algorithmic in nature – that there were a set of fundamental precepts that formed the foundation of language, and by extension,… Read More »Where Semantics and Machine Learning Converge
·datasciencecentral.com·
Where Semantics and Machine Learning Converge - DataScienceCentral.com
Deep Learning with Graph-Structured Representations
Deep Learning with Graph-Structured Representations
Very honored to receive the ELLIS PhD Award for my thesis on Deep Learning with Graph-Structured Representations -- alongside with with @NagraniArsha for her work on multimodal DL (congrats!) https://t.co/FUzNA87okN pic.twitter.com/W2KrbQN7yS— Thomas Kipf (@thomaskipf) December 9, 2021
·twitter.com·
Deep Learning with Graph-Structured Representations
Learning SPARQL on Twitter
Learning SPARQL on Twitter
Interested in using Wikidata & Wiktionary to extract lexicographical information?@sina_ahm created a simple SPARQL query generator that helps non-experts get familiar w/ #SPARQL & create queries to look up words in @wikidata & #Dbnary:👉 https://t.co/gS6JG8EIFb#NLProc pic.twitter.com/9UOCABh3c9— ELEXIS EU (@elexis_eu) December 1, 2021
·twitter.com·
Learning SPARQL on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Curious about the most used ontologies in the agri-food domain? Our #Ontologies Community of Practice has developed a webpage featuring the most popular ontologies & info on those developed by @CGIAR and partners.Find it here: https://t.co/AMVeSHCpdi pic.twitter.com/LmazTo4V2T— CGIAR Platform for Big Data in Agriculture (@CGIAR_Data) December 9, 2021
·twitter.com·
Aaron Bradley on Twitter
Survey on English Entity Linking on Wikidata
Survey on English Entity Linking on Wikidata
"... most Entity Linking approaches use Wikidata in the same way as any other knowledge graph missing the chance to leverage Wikidata-specific characteristics to increase quality" > Survey on English Entity Linking on Wikidata https://t.co/JYHJMfVHsO pic.twitter.com/hRxRp3nhnQ— Aaron Bradley (@aaranged) December 10, 2021
·twitter.com·
Survey on English Entity Linking on Wikidata
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Anti-Money Laundering Alert Optimization Using Machine Learning with Graphs https://t.co/e7fQg57Mrt pic.twitter.com/8nZ7QzeUD5— Aaron Bradley (@aaranged) December 15, 2021
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
ISEEQ: Information Seeking Question Generation using Dynamic Meta-Information Retrieval and Knowledge Graphs @manasgaur90 et al. https://t.co/Gg6s7J0kwH pic.twitter.com/kNbaji06Vf— Aaron Bradley (@aaranged) December 15, 2021
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
A Simple Standard for Sharing Ontological Mappings (SSSOM) @NicoMatentzoglu + ~40 others https://t.co/rCAyGakxdY pic.twitter.com/GK0fzPFx6q— Aaron Bradley (@aaranged) December 15, 2021
·twitter.com·
Aaron Bradley on Twitter
Michael Bronstein on Twitter
Michael Bronstein on Twitter
What if we model a graph as a set of subgraphs instead of a set of interconnected nodes? Hint: expressive power + equivariance! 🧵Joint work by a super team: @beabevi_ * @dereklim_lzh * @balasrini32 @ChenCaiUCSD @gblearning42 @mmbronstein @HaggaiMaronhttps://t.co/6rW4e47RhN pic.twitter.com/Ajl8L5xdDc— Fabrizio Frasca (@ffabffrasca) December 15, 2021
·twitter.com·
Michael Bronstein on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
MedGraph: An experimental semantic information retrieval method using knowledge graph embedding for the biomedical citations indexed in PubMed https://t.co/B3tmoVilDt pic.twitter.com/DvEVoU53ec— Aaron Bradley (@aaranged) December 14, 2021
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Graph-based hierarchical record clustering for unsupervised entity resolution https://t.co/I0saMXcQFL pic.twitter.com/eB7Cphflp3— Aaron Bradley (@aaranged) December 14, 2021
·twitter.com·
Aaron Bradley on Twitter
Learning SPARQL on Twitter
Learning SPARQL on Twitter
Use our SPARQL micro-services to query #PubMedCentral with #SPARQL using a PMID or PMCID, and get article metadata in #RDF.https://t.co/1RKvb9GZkvhttps://t.co/XxjTUy2Gut@pubmed @wimmics @Inria @uca_research @Laboratoire_I3S #ScientificLitterature pic.twitter.com/bm8OdpzoaN— Michel Franck (@franck_michel2) December 7, 2021
·twitter.com·
Learning SPARQL on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Embedding knowledge on ontology into the corpus by topic to improve the performance of deep learning methods in sentiment analysis - Scientific Reports https://t.co/W0lKPRCh84 #DL #AI #ML #DeepLearning #ArtificialIntelligence #MachineLearning #ComputerVision #AutonomousVehicles— Deep_In_Depth (@Deep_In_Depth) December 11, 2021
·twitter.com·
Aaron Bradley on Twitter
Aaron Bradley on Twitter
Aaron Bradley on Twitter
UFO: Unified Foundational Ontology / Giancarlo Guizzardi et al. https://t.co/GuTFxstIqV pic.twitter.com/9BJG1GUdIt— Aaron Bradley (@aaranged) December 16, 2021
·twitter.com·
Aaron Bradley on Twitter
How Data Modeling is different today
How Data Modeling is different today
Over the last 20 years my life revolved around doing “everything modeling” - building models, discussing modeling, teaching modeling and so on. Unsurprisingly, I have an opinion about models and modeling.
·linkedin.com·
How Data Modeling is different today