Found 3951 bookmarks
Newest
Medical Graph RAG
Medical Graph RAG
LLMs and Knowledge Graphs: A love story ๐Ÿ’“ Researchers from University of Oxford recently released MedGraphRAG. At its core, MedGraphRAG is a frameworkโ€ฆ
ยทlinkedin.comยท
Medical Graph RAG
One of the keys to a knowledge graphโ€™s power is its ontology
One of the keys to a knowledge graphโ€™s power is its ontology
Knowledge Graphs are moving from being a small niche subject to the latest hot topic, so understanding the core strengths of Knowledge Graphs (KGs) is crucialโ€ฆ | 58 comments on LinkedIn
One of the keys to a knowledge graphโ€™s power is its ontology
ยทlinkedin.comยท
One of the keys to a knowledge graphโ€™s power is its ontology
LLM text-to-SQL doesn't work. What we ended up building was an ontology architecture
LLM text-to-SQL doesn't work. What we ended up building was an ontology architecture
we spent 12 months figuring out that LLM text-to-SQL doesn't work. and so we re-architected our entire system. what we ended up building was an ontologyโ€ฆ | 36 comments on LinkedIn
LLM text-to-SQL doesn't work.and so we re-architected our entire system.what we ended up building was an ontology architecture
ยทlinkedin.comยท
LLM text-to-SQL doesn't work. What we ended up building was an ontology architecture
Building a Graph RAG System with LLM Router: A Comprehensive Coding Walkthrough โ€“ News from generation RAG
Building a Graph RAG System with LLM Router: A Comprehensive Coding Walkthrough โ€“ News from generation RAG
Introduction to Graph RAG and LLM RoutersSetting Up the Development EnvironmentBuilding the Knowledge GraphData Preparation and IngestionGraph Database Selection and SetupExample usageExample usageImplementing the LLM RouterDefining Router LogicIntegrating with LangChainConnecting Graph RAG with the RouterImplementing Advanced RAG TechniquesScaling and OptimizationConclusion and Future Directions Introduction to Graph RAG and LLM Routers Graph RAG, short for Retrieval-Augmented
ยทragaboutit.comยท
Building a Graph RAG System with LLM Router: A Comprehensive Coding Walkthrough โ€“ News from generation RAG
deepset GraphRAG demo
deepset GraphRAG demo
Utilizing knowledge graphs is one popular solution to drive up the performance of AI applications. We work closely together with other key players such as Emilโ€ฆ
ยทlinkedin.comยท
deepset GraphRAG demo
RDFGraphGen, a general-purpose, domain-independent generator of synthetic RDF knowledge graphs, based on SHACL constraints
RDFGraphGen, a general-purpose, domain-independent generator of synthetic RDF knowledge graphs, based on SHACL constraints
In the past year or so, our research team designed, developed and published RDFGraphGen, a general-purpose, domain-independent generator of synthetic RDFโ€ฆ
RDFGraphGen, a general-purpose, domain-independent generator of synthetic RDF knowledge graphs, based on SHACL constraints
ยทlinkedin.comยท
RDFGraphGen, a general-purpose, domain-independent generator of synthetic RDF knowledge graphs, based on SHACL constraints
Plan Like a Graph
Plan Like a Graph
An easy trick to improve your LLM results without fine-tuning. Many people know "Few-Shot prompting" or "Chain of Thought prompting". A new (better) method wasโ€ฆ | 77 comments on LinkedIn
Plan Like a Graph
ยทlinkedin.comยท
Plan Like a Graph
Episode #212: Digging Into Graph Theory in Python With David Amos โ€“ The Real Python Podcast
Episode #212: Digging Into Graph Theory in Python With David Amos โ€“ The Real Python Podcast
Have you wondered about graph theory and how to start exploring it in Python? What resources and Python libraries can you use to experiment and learn more? This week on the show, former co-host David Amos returns to talk about what he's been up to and share his knowledge about graph theory in Python.
ยทrealpython.comยท
Episode #212: Digging Into Graph Theory in Python With David Amos โ€“ The Real Python Podcast
Foundations and Frontiers of Graph Learning Theory
Foundations and Frontiers of Graph Learning Theory
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures. Notably, Graph Neural Networks (GNNs), i.e. neural network architectures...
Foundations and Frontiers of Graph Learning Theory
ยทarxiv.orgยท
Foundations and Frontiers of Graph Learning Theory
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
๐—ฅ๐—”๐—š ๐—œ๐—บ๐—ฝ๐—น๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—™๐—ฎ๐—ถ๐—น ๐——๐˜‚๐—ฒ ๐—ง๐—ผ ๐—œ๐—ป๐˜€๐˜‚๐—ณ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜ ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ ๐—ข๐—ป ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป ๐—œ๐—ป๐˜๐—ฒ๐—ป๐˜ ๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Žโ€ฆ | 12 comments on LinkedIn
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
ยทlinkedin.comยท
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.