Found 471 bookmarks
Newest
How does Microsoft's GraphRAG fit in the Graph RAG ecosystem? | LinkedIn
How does Microsoft's GraphRAG fit in the Graph RAG ecosystem? | LinkedIn
Recently, Microsoft announced with a post their GraphRAG offering. This article provides a brief overview of their approach, how it compares to other Graph RAG varieties, what problems it can address and what it cannot.
How does Microsoft's GraphRAG fit in the Graph RAG ecosystem?
·linkedin.com·
How does Microsoft's GraphRAG fit in the Graph RAG ecosystem? | LinkedIn
RAG: Graph Retrieval vs Graph Reasoning
RAG: Graph Retrieval vs Graph Reasoning
Knowledge graphs (KGs) are a specific type of #data structure designed to represent entities and the connections between them. They move beyond simply storing… | 14 comments on LinkedIn
𝗚𝗿𝗮𝗽𝗵 𝗥𝗲𝗮𝘀𝗼𝗻𝗶𝗻𝗴
·linkedin.com·
RAG: Graph Retrieval vs Graph Reasoning
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected - SynaLinks/HybridAGI
·github.com·
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Ask your (research) question against 76 Million scientific articles: https://ask.orkg.org Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific…
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
·linkedin.com·
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Why LLMs Need to Be Graphy | LinkedIn
Why LLMs Need to Be Graphy | LinkedIn
Copyright 2024 Kurt Cagle / The Cagle Report Recently, I've spent a lot of time talking with clients about the need for knowledge graphs in LLMs, why they are not "graphlike," and why we may need to rethink the whole transformer model. I think this topic is worth exploring, and I'd like to have a po
·linkedin.com·
Why LLMs Need to Be Graphy | LinkedIn
7 Pain Points of GraphRAG
7 Pain Points of GraphRAG
What Could Go Wrong When We Start Using LLMs to Organize Knowledge? 7 Pain Points of GraphRAG Alright, tech enthusiasts and AI aficionados. We need to discuss… | 43 comments on LinkedIn
7 Pain Points of GraphRAG
·linkedin.com·
7 Pain Points of GraphRAG
graph-based RAG bennchmark
graph-based RAG bennchmark
Every time I write about why graph-based RAG produces more insightful and more accurate answers for Q&A / digital assistant AI applications, people ask — do… | 21 comments on LinkedIn
graph-based RAG
·linkedin.com·
graph-based RAG bennchmark
GraphReader: Long-Context Processing in AI
GraphReader: Long-Context Processing in AI
GraphReader: Long-Context Processing in AI ... As AI systems tackle increasingly complex tasks, the ability to effectively process and reason over long…
GraphReader: Long-Context Processing in AI
·linkedin.com·
GraphReader: Long-Context Processing in AI
How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks
How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks
💡 How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks? 🔎…
·linkedin.com·
How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks
GitHub - a-s-g93/neo4j-runway: End to end solution for migrating CSV data into a Neo4j graph using an LLM for the data discovery and graph data modeling stages.
GitHub - a-s-g93/neo4j-runway: End to end solution for migrating CSV data into a Neo4j graph using an LLM for the data discovery and graph data modeling stages.
End to end solution for migrating CSV data into a Neo4j graph using an LLM for the data discovery and graph data modeling stages. - a-s-g93/neo4j-runway
·github.com·
GitHub - a-s-g93/neo4j-runway: End to end solution for migrating CSV data into a Neo4j graph using an LLM for the data discovery and graph data modeling stages.
A repo for ICML graph papers
A repo for ICML graph papers
Following ICLR Graph Papers, I've created a repo for ICML graph papers, grouped by topic. We've got around 250 papers focusing on Graphs and GNNs in ICML'24.…
·linkedin.com·
A repo for ICML graph papers
Juan Sequeda at Snowflake Summit
Juan Sequeda at Snowflake Summit
I spoke with Juan Sequeda about knowledge graphs and how he's leveraging them in the product at data.world - he also spoke about some of the new features tha...
·youtube.com·
Juan Sequeda at Snowflake Summit