Found 46 bookmarks
Custom sorting
Graph Data Modeling Without Graph Databases
Graph Data Modeling Without Graph Databases
Graph Data Modeling Without Graph Databases: PostgreSQL and Hybrid Approaches for Agentic Systems 🖇️ Organizations implementing AI systems today face a practical challenge: maintaining multiple specialized databases (vector stores, graph databases, relational systems) creates significant operational complexity, increases costs, and introduces synchronization headaches. Companies like Writer (insight from a recent Waseem Alshikh interview with Harrison Chase) have tackled this problem by implementing graph-like structures directly within PostgreSQL, eliminating the need for separate graph databases while maintaining the necessary functionality. This approach dramatically simplifies infrastructure management, reduces the number of systems to monitor, and eliminates error-prone synchronization processes that can cost thousands of dollars in wasted resources. For enterprises focused on delivering business value rather than managing technical complexity, these PostgreSQL-based implementations offer a pragmatic path forward, though with important trade-offs when considering more sophisticated agentic systems. Writer implemented a subject-predicate-object triple structure directly in PostgreSQL tables rather than using dedicated graph databases. This approach maintains the semantic richness of knowledge graphs while leveraging PostgreSQL's maturity and scalability. Writer kept the conceptual structure of triples that underpin knowledge graphs implemented through a relational schema design. Instead of relying on native graph traversals, Writer developed a fusion decoder that reconstructs graph-like relationships at query time. This component serves as the bridge between the storage layer (PostgreSQL with its triple-inspired structure) and the language model, enabling sophisticated information retrieval without requiring a dedicated graph database's traversal capabilities. The approach focuses on query translation and result combination rather than storage structure optimization. Complementing the triple-based approach, PostgreSQL with extensions (PG Vector and PG Vector Scale) can function effectively as a vector database. This challenges the notion that specialized vector databases are necessary, Treating embeddings as derived data leads to a more natural and maintainable architecture. This reframes the database's role from storing independent vector embeddings to managing derived data that automatically synchronizes with its source. But a critical distinction between retrieval systems and agentic systems need to be made. While PostgreSQL-based approaches excel at knowledge retrieval tasks where the focus is on precision and relevance, agentic systems operate in dynamic environments where context evolves over time, previous actions influence future decisions, and contradictions need to be resolved. This distinction drives different architectural requirements and suggests potential complementary roles for different database approaches. | 15 comments on LinkedIn
Graph Data Modeling Without Graph Databases
¡linkedin.com¡
Graph Data Modeling Without Graph Databases
Build your hybrid-Graph for RAG & GraphRAG applications using the power of NLP | LinkedIn
Build your hybrid-Graph for RAG & GraphRAG applications using the power of NLP | LinkedIn
Build a graph for RAG application for a price of a chocolate bar! What is GraphRAG for you? What is GraphRAG? What does GraphRAG mean from your perspective? What if you could have a standard RAG and a GraphRAG as a combi-package, with just a query switch? The fact is, there is no concrete, universal
¡linkedin.com¡
Build your hybrid-Graph for RAG & GraphRAG applications using the power of NLP | LinkedIn
Using knowledge graphs to build GraphRAG applications with Amazon Bedrock and Amazon Neptune | Amazon Web Services
Using knowledge graphs to build GraphRAG applications with Amazon Bedrock and Amazon Neptune | Amazon Web Services
Retrieval Augmented Generation (RAG) is an innovative approach that combines the power of large language models with external knowledge sources, enabling more accurate and informative generation of content. Using knowledge graphs as sources for RAG (GraphRAG) yields numerous advantages. These knowledge bases encapsulate a vast wealth of curated and interconnected information, enabling the generation of responses that are grounded in factual knowledge. In this post, we show you how to build GraphRAG applications using Amazon Bedrock and Amazon Neptune with LlamaIndex framework.
¡aws.amazon.com¡
Using knowledge graphs to build GraphRAG applications with Amazon Bedrock and Amazon Neptune | Amazon Web Services
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected - SynaLinks/HybridAGI
¡github.com¡
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
GitHub - a-s-g93/neo4j-runway: End to end solution for migrating CSV data into a Neo4j graph using an LLM for the data discovery and graph data modeling stages.
GitHub - a-s-g93/neo4j-runway: End to end solution for migrating CSV data into a Neo4j graph using an LLM for the data discovery and graph data modeling stages.
End to end solution for migrating CSV data into a Neo4j graph using an LLM for the data discovery and graph data modeling stages. - a-s-g93/neo4j-runway
¡github.com¡
GitHub - a-s-g93/neo4j-runway: End to end solution for migrating CSV data into a Neo4j graph using an LLM for the data discovery and graph data modeling stages.
Matching skills and candidates with Graph RAG
Matching skills and candidates with Graph RAG
At Semantic Partners, we wanted to build our informed opinion over the strengths and weaknesses of graph RAG for RDF triple stores. We considered a simple use case: matching a job opening with Curriculum Vitae. We show how we used Ontotext GraphDB to build a simple graph RAG retriever using open, offline LLM models – the graph acting like a domain expert for improving search accuracy.
¡semanticpartners.com¡
Matching skills and candidates with Graph RAG