Terminology Augmented Generation (TAG)? Recently some fellow terminologists have proposed the new term "Terminology-Augmented Generation (TAG)" to refer to… | 29 comments on LinkedIn
What is really Graph RAG? Inspired by "From Local to Global: A Graph RAG Approach to Query-Focused Summarization" paper from Microsoft! How do you combine… | 12 comments on LinkedIn
Knowledge Graphs as a source of trust for LLM-powered enterprise question answering
Knowledge Graphs as a source of trust for LLM-powered enterprise question answering That has been our position from the beginning when we started our research… | 29 comments on LinkedIn
Knowledge Graphs as a source of trust for LLM-powered enterprise question answering
A zero-hallucination AI chatbot that answered over 10000 questions of students at the University of Chicago using GraphRAG
UChicago Genie is now open source! How we built a zero-hallucination AI chatbot that answered over 10000 questions of students at the University of… | 25 comments on LinkedIn
a zero-hallucination AI chatbot that answered over 10000 questions of students at the University of Chicago
Enhancing RAG-based apps by constructing and leveraging knowledge graphs with open-source LLMs
Graph Retrieval Augmented Generation (Graph RAG) is emerging as a powerful addition to traditional vector search retrieval methods. Graphs are great at repre...
OG-RAG: Ontology-Grounded Retrieval-Augmented Generation For Large...
This paper presents OG-RAG, an Ontology-Grounded Retrieval Augmented Generation method designed to enhance LLM-generated responses by anchoring retrieval processes in domain-specific ontologies....
The journey towards a knowledge graph for generative AI
While retrieval-augmented generation is effective for simpler queries, advanced reasoning questions require deeper connections between information that exist across documents. They require a knowledge graph.
Large Language Models, Knowledge Graphs and Search Engines: A...
Much has been discussed about how Large Language Models, Knowledge Graphs and Search Engines can be combined in a synergistic manner. A dimension largely absent from current academic discourse is...
Improving Retrieval Augmented Generation accuracy with GraphRAG | Amazon Web Services
Lettria, an AWS Partner, demonstrated that integrating graph-based structures into RAG workflows improves answer precision by up to 35% compared to vector-only retrieval methods. In this post, we explore why GraphRAG is more comprehensive and explainable than vector RAG alone, and how you can use this approach using AWS services and Lettria.
We're excited to publicly release the Diffbot GraphRAG LLM! With larger and larger frontier LLMs, we realized that they would eventually hit a limit in terms… | 48 comments on LinkedIn
Ontologies and knowledge graphs are the secret sauce for AI
𝐌𝐲 𝐛𝐨𝐥𝐝 𝐚𝐧𝐝 𝐨𝐧𝐥𝐲 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 𝐟𝐨𝐫 𝟐𝟎𝟐𝟓: By December, everyone, their chatbot, and their agents will finally agree that ontologies… | 80 comments on LinkedIn
ontologies and knowledge graphs are the secret sauce for AI
OpenSPG (Semantic-Enhanced Programmable Graph) is a new generation of enterprise knowledge graph (EKG) engine, bidirectionally enhanced by LLMs and knowledge graphs
OpenSPG (Semantic-Enhanced Programmable Graph) is a new generation of enterprise knowledge graph (EKG) engine, bidirectionally enhanced by LLMs and knowledge…
OpenSPG (Semantic-Enhanced Programmable Graph) is a new generation of enterprise knowledge graph (EKG) engine, bidirectionally enhanced by LLMs and knowledge graphs
Graph_RAG: A Flask app running GraphRAG for healthcare, made with Vertex AI and Neo4j, to be deployed in a container
A Flask app running GraphRAG for healthcare, made with Vertex AI and Neo4j, to be deployed in a container (Cloud Run or ECS). - RubensZimbres/Graph_RAG
Building Knowledge Graphs with LLM Graph Transformer
🧱Building Knowledge Graphs with LLM Graph Transformer A deep dive into LangChain’s implementation of graph construction with LLMs If you want to try out… | 32 comments on LinkedIn
Building Knowledge Graphs with LLM Graph Transformer
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph…
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
Using LLMs in each stage of building a Graph RAG chatbot: A case study
How we used Kùzu in combination with LLMs in multiple stages of the Graph RAG pipeline to build a QA chatbot for the Connected Data London Knowledge Graph Challenge
Why someone in a regulated industry should invest in GraphRAG + Demo
Why someone in a regulated industry should invest in #GraphRAG is something we have already discussed here: https://lnkd.in/d5ykdD7u With the associated…
Why someone in a regulated industry should invest in hashtag#GraphRAG
🚀 R2R : The Most Advanced AI Retrieval System We're excited to announce R2R's V3 API, bringing production-ready RAG capabilities to teams building serious AI… | 10 comments on LinkedIn