๐ง๐ต๐ฒ ๐๐๐๐๐ฟ๐ฒ ๐๐ ๐๐น๐ฒ๐ฎ๐ฟ: ๐๐ด๐ฒ๐ป๐๐ ๐ช๐ถ๐น๐น ๐ก๐๐๐ ๐๐ฟ๐ฎ๐ฝ๐ต ๐ฅ๐๐
๐คบ ๐ง๐ต๐ฒ ๐๐๐๐๐ฟ๐ฒ ๐๐ ๐๐น๐ฒ๐ฎ๐ฟ: ๐๐ด๐ฒ๐ป๐๐ ๐ช๐ถ๐น๐น ๐ก๐๐๐ ๐๐ฟ๐ฎ๐ฝ๐ต ๐ฅ๐๐
Why? It combines Multi-hop reasoning, Non-Parameterized / Learning-Based Retrieval, Topology-Aware Prompting.
๏น๏น๏น๏น๏น๏น๏น๏น๏น
๐คบ ๐ช๐ต๐ฎ๐ ๐๐ ๐๐ฟ๐ฎ๐ฝ๐ต-๐๐ป๐ต๐ฎ๐ป๐ฐ๐ฒ๐ฑ ๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น-๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป (๐ฅ๐๐)?
โฉ LLMs hallucinate.
โฉ LLMs forget.
โฉ LLMs struggle with complex reasoning.
Graphs connect facts. They organize knowledge into neat, structured webs. So when RAG retrieves from a graph, the LLM doesn't just guess โ it reasons. It follows the map.
๏น๏น๏น๏น๏น๏น๏น๏น๏น
๐คบ ๐ง๐ต๐ฒ ๐ฐ-๐ฆ๐๐ฒ๐ฝ ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐ ๐ผ๐ณ ๐๐ฟ๐ฎ๐ฝ๐ต ๐ฅ๐๐
1๏ธโฃ โ User Query: The user asks a question. ("Tell me how Einstein used Riemannian geometry?")
2๏ธโฃ โ Retrieval Module: The system fetches the most structurally relevant knowledge from a graph. (Entities: Einstein, Grossmann, Riemannian Geometry.)
3๏ธโฃ โ Prompting Module: Retrieved knowledge is reshaped into a golden prompt โ sometimes as structured triples, sometimes as smart text.
4๏ธโฃ โ Output Response: LLM generates a fact-rich, logically sound answer.
๏น๏น๏น๏น๏น๏น๏น๏น๏น
๐คบ ๐ฆ๐๐ฒ๐ฝ ๐ญ: ๐๐๐ถ๐น๐ฑ ๐๐ฟ๐ฎ๐ฝ๐ต-๐ฃ๐ผ๐๐ฒ๐ฟ๐ฒ๐ฑ ๐๐ฎ๐๐ฎ๐ฏ๐ฎ๐๐ฒ๐
โฉ Use Existing Knowledge Graphs like Freebase or Wikidata โ structured, reliable, but static.
โฉ Or Build New Graphs From Text (OpenIE, instruction-tuned LLMs) โ dynamic, adaptable, messy but powerful.
๐คบ ๐ฆ๐๐ฒ๐ฝ ๐ฎ: ๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น ๐ฎ๐ป๐ฑ ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐๐ถ๐ป๐ด ๐๐น๐ด๐ผ๐ฟ๐ถ๐๐ต๐บ๐
โฉ Non-Parameterized Retrieval (Deterministic, Probabilistic, Heuristic)
โ
Think Dijkstra's algorithm, PageRank, 1-hop neighbors. Fast but rigid.
โฉ Learning-Based Retrieval (GNNs, Attention Models)
โ
Think "graph convolution" or "graph attention." Smarter, deeper, but heavier.
โฉ Prompting Approaches:
โ
Topology-Aware: Preserve graph structure โ multi-hop reasoning.
โ
Text Prompting: Flatten into readable sentences โ easier for vanilla LLMs.
๐คบ ๐ฆ๐๐ฒ๐ฝ ๐ฏ: ๐๐ฟ๐ฎ๐ฝ๐ต-๐ฆ๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ฑ ๐ฃ๐ถ๐ฝ๐ฒ๐น๐ถ๐ป๐ฒ๐
โฉ Sequential Pipelines: Straightforward query โ retrieve โ prompt โ answer.
โฉ Loop Pipelines: Iterative refinement until the best evidence is found.
โฉ Tree Pipelines: Parallel exploration โ multiple knowledge paths at once.
๐คบ ๐ฆ๐๐ฒ๐ฝ ๐ฐ: ๐๐ฟ๐ฎ๐ฝ๐ต-๐ข๐ฟ๐ถ๐ฒ๐ป๐๐ฒ๐ฑ ๐ง๐ฎ๐๐ธ๐
โฉ Knowledge Graph QA (KGQA): Answering deep, logical questions with graphs.
โฉ Graph Tasks: Node classification, link prediction, graph summarization.
โฉ Domain-Specific Applications: Biomedicine, law, scientific discovery, finance.
โฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃ
Join my ๐๐ฎ๐ป๐ฑ๐-๐ผ๐ป ๐๐ ๐๐ด๐ฒ๐ป๐ ๐ง๐ฟ๐ฎ๐ถ๐ป๐ถ๐ป๐ด.
Skip the fluff and build real AI agents โ fast.
๐ช๐ต๐ฎ๐ ๐๐ผ๐ ๐ด๐ฒ๐:
โ
Create Smart Agents + Powerful RAG Pipelines
โ
Master ๐๐ฎ๐ป๐ด๐๐ต๐ฎ๐ถ๐ป, ๐๐ฟ๐ฒ๐๐๐ & ๐ฆ๐๐ฎ๐ฟ๐บ โ all in one training
โ
Projects with Text, Audio, Video & Tabular Data
๐ฐ๐ฒ๐ฌ+ engineers already enrolled
๐๐ป๐ฟ๐ผ๐น๐น ๐ป๐ผ๐ โ ๐ฏ๐ฐ% ๐ผ๐ณ๐ณ, ๐ฒ๐ป๐ฑ๐ ๐๐ผ๐ผ๐ป:ย https://lnkd.in/eGuWr4CH | 35 comments on LinkedIn
๐ง๐ต๐ฒ ๐๐๐๐๐ฟ๐ฒ ๐๐ ๐๐น๐ฒ๐ฎ๐ฟ: ๐๐ด๐ฒ๐ป๐๐ ๐ช๐ถ๐น๐น ๐ก๐๐๐ ๐๐ฟ๐ฎ๐ฝ๐ต ๐ฅ๐๐