Found 4 bookmarks
Custom sorting
Integrating Knowledge Graphs with Symbolic AI: The Path to Interpretable Hybrid AI Systems in Medicine
Integrating Knowledge Graphs with Symbolic AI: The Path to Interpretable Hybrid AI Systems in Medicine
In this position paper "Integrating Knowledge Graphs with Symbolic AI: The Path to Interpretable Hybrid AI Systems in Medicine" my L3S Research Center and TIB – Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek colleagues around Maria-Esther Vidal have nicely laid out some research challenges on the way to interpretable hybrid AI systems in medicine. However, I think the conceptual framework is broadly applicable way beyond medicine. For example, my former colleagues and PhD students at eccenca are working on operationalizing Neuro-Symbolic AI for Enterprise Knowledge Management with eccenca's Corporate Memory. The paper outlines a compelling architecture for combining sub-symbolic models (e.g., deep learning) with symbolic reasoning systems to enable AI that is interpretable, robust, and aligned with human values. eccenca implements these principles at scale through its neuro-symbolic Enterprise Knowledge Graph platform, Corporate Memory for real-world industrial settings: 1. Symbolic Foundation via Semantic Web Standards - Corporate Memory is grounded in W3C standards (RDF, RDFS, OWL, SHACL, SPARQL), enabling formal knowledge representation, inferencing, and constraint validation. This allows to encode domain ontologies, business rules, and data governance policies in a machine-interpretable and human-verifiable manner. 2. Integration of Sub-symbolic Components - it integrates LLMs and ML models for tasks such as schema matching, natural language interpretation, entity resolution, and ontology population. These are linked to the symbolic layer via mappings and annotations, ensuring traceability and explainability. 3. Neuro-Symbolic Interfaces for Hybrid Reasoning - Hybrid workflows where symbolic constraints (e.g., SHACL shapes) guide LLM-based data enrichment. LLMs suggest schema alignments, which are verified against ontological axioms. Graph embeddings and path-based querying power semantic search and similarity. 4. Human-in-the-loop Interactions - Domain experts interact through low-code interfaces and semantic UIs that allow inspection, validation, and refinement of both the symbolic and neural outputs, promoting human oversight and continuous improvement. Such an approach can power Industrial Applications, e.g. in digital thread integration in manufacturing, compliance automation in pharma and finance and in general, cross-domain interoperability in data mesh architectures. Corporate Memory is a practical instantiation of neuro-symbolic AI that meets industrial-grade requirements for governance, scalability, and explainability – key tenets of Human-Centric AI. Check it out here: https://lnkd.in/evyarUsR #NeuroSymbolicAI #HumanCentricAI #KnowledgeGraphs #EnterpriseArchitecture #ExplainableAI #SemanticWeb #LinkedData #LLM #eccenca #CorporateMemory #OntologyDrivenAI #AI4Industry
Integrating Knowledge Graphs with Symbolic AI: The Path to Interpretable Hybrid AI Systems in Medicine
·linkedin.com·
Integrating Knowledge Graphs with Symbolic AI: The Path to Interpretable Hybrid AI Systems in Medicine
Semantically Composable Architectures
Semantically Composable Architectures
I'm happy to share the draft of the "Semantically Composable Architectures" mini-paper. It is the culmination of approximately four years' work, which began with Coreless Architectures and has now evolved into something much bigger. LLMs are impressive, but a real breakthrough will occur once we surpass the cognitive capabilities of a single human brain. Enabling autonomous large-scale system reverse engineering and large-scale autonomous transformation with minimal to no human involvement, while still making it understandable to humans if they choose to, is a central pillar of making truly groundbreaking changes. We hope the ideas we shared will be beneficial to humanity and advance our civilization further. It is not final and will require some clarification and improvements, but the key concepts are present. Happy to hear your thoughts and feedback. Some of these concepts underpin the design of the Product X system. Part of the core team + external contribution: Andrew Barsukov Andrey Kolodnitsky Sapta Girisa N Keith E. Glendon Gurpreet Sachdeva Saurav Chandra Mike Diachenko Oleh Sinkevych | 13 comments on LinkedIn
Semantically Composable Architectures
·linkedin.com·
Semantically Composable Architectures
The Era of Semantic Decoding
The Era of Semantic Decoding
Recent work demonstrated great promise in the idea of orchestrating collaborations between LLMs, human input, and various tools to address the inherent limitations of LLMs. We propose a novel perspective called semantic decoding, which frames these collaborative processes as optimization procedures in semantic space. Specifically, we conceptualize LLMs as semantic processors that manipulate meaningful pieces of information that we call semantic tokens (known thoughts). LLMs are among a large pool of other semantic processors, including humans and tools, such as search engines or code executors. Collectively, semantic processors engage in dynamic exchanges of semantic tokens to progressively construct high-utility outputs. We refer to these orchestrated interactions among semantic processors, optimizing and searching in semantic space, as semantic decoding algorithms. This concept draws a direct parallel to the well-studied problem of syntactic decoding, which involves crafting algorithms to best exploit auto-regressive language models for extracting high-utility sequences of syntactic tokens. By focusing on the semantic level and disregarding syntactic details, we gain a fresh perspective on the engineering of AI systems, enabling us to imagine systems with much greater complexity and capabilities. In this position paper, we formalize the transition from syntactic to semantic tokens as well as the analogy between syntactic and semantic decoding. Subsequently, we explore the possibilities of optimizing within the space of semantic tokens via semantic decoding algorithms. We conclude with a list of research opportunities and questions arising from this fresh perspective. The semantic decoding perspective offers a powerful abstraction for search and optimization directly in the space of meaningful concepts, with semantic tokens as the fundamental units of a new type of computation.
·arxiv.org·
The Era of Semantic Decoding