Integrating Knowledge Graphs with Symbolic AI: The Path to Interpretable Hybrid AI Systems in Medicine
In this position paper "Integrating Knowledge Graphs with Symbolic AI: The Path to Interpretable Hybrid AI Systems in Medicine" my L3S Research Center and TIB – Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek colleagues around Maria-Esther Vidal have nicely laid out some research challenges on the way to interpretable hybrid AI systems in medicine. However, I think the conceptual framework is broadly applicable way beyond medicine.
For example, my former colleagues and PhD students at eccenca are working on operationalizing Neuro-Symbolic AI for Enterprise Knowledge Management with eccenca's Corporate Memory. The paper outlines a compelling architecture for combining sub-symbolic models (e.g., deep learning) with symbolic reasoning systems to enable AI that is interpretable, robust, and aligned with human values. eccenca implements these principles at scale through its neuro-symbolic Enterprise Knowledge Graph platform, Corporate Memory for real-world industrial settings:
1. Symbolic Foundation via Semantic Web Standards - Corporate Memory is grounded in W3C standards (RDF, RDFS, OWL, SHACL, SPARQL), enabling formal knowledge representation, inferencing, and constraint validation. This allows to encode domain ontologies, business rules, and data governance policies in a machine-interpretable and human-verifiable manner.
2. Integration of Sub-symbolic Components - it integrates LLMs and ML models for tasks such as schema matching, natural language interpretation, entity resolution, and ontology population. These are linked to the symbolic layer via mappings and annotations, ensuring traceability and explainability.
3. Neuro-Symbolic Interfaces for Hybrid Reasoning - Hybrid workflows where symbolic constraints (e.g., SHACL shapes) guide LLM-based data enrichment. LLMs suggest schema alignments, which are verified against ontological axioms. Graph embeddings and path-based querying power semantic search and similarity.
4. Human-in-the-loop Interactions - Domain experts interact through low-code interfaces and semantic UIs that allow inspection, validation, and refinement of both the symbolic and neural outputs, promoting human oversight and continuous improvement.
Such an approach can power Industrial Applications, e.g. in digital thread integration in manufacturing, compliance automation in pharma and finance
and in general, cross-domain interoperability in data mesh architectures. Corporate Memory is a practical instantiation of neuro-symbolic AI that meets industrial-grade requirements for governance, scalability, and explainability – key tenets of Human-Centric AI. Check it out here: https://lnkd.in/evyarUsR
#NeuroSymbolicAI #HumanCentricAI #KnowledgeGraphs #EnterpriseArchitecture #ExplainableAI #SemanticWeb #LinkedData #LLM #eccenca #CorporateMemory #OntologyDrivenAI #AI4Industry
Integrating Knowledge Graphs with Symbolic AI: The Path to Interpretable Hybrid AI Systems in Medicine