Found 117 bookmarks
Custom sorting
Evaluate GraphDBs (the RAG angle)
Evaluate GraphDBs (the RAG angle)
As I’ve been diving deep into Graph RAG, one of my colleagues asked me to compare different graph databases. That got me thinking — it’s…
·medium.com·
Evaluate GraphDBs (the RAG angle)
A Brief History of Graphs At Facebook | LinkedIn
A Brief History of Graphs At Facebook | LinkedIn
Facebook, one of the world's largest social media platforms, fundamentally organizes its billions of users and their interactions as a vast social network. At the heart of this organization lies the concept of a graph—a mathematical structure consisting of nodes (or vertices) connected by edges (or
·linkedin.com·
A Brief History of Graphs At Facebook | LinkedIn
What makes QLever different
What makes QLever different
When we present QLever, people often ask "how is this possible" as our speed and scale is on another dimension. We now have a page in the wiki that goes into a bit more detail on why and how this is possible. In short: • Purpose built for large scale graph data, not retrofitted • Indexing optimized for fast queries without full in-memory loading • Designed in C++ for efficiency and low overhead • Integrated full text and spatial search in the same engine • Fast interactive queries even on hundreds of billions of triples Link to the wiki page in the comments.
guess Hannah Bast
·linkedin.com·
What makes QLever different
QLever user testimonials
QLever user testimonials
Qlever: graph database implementing the RDF and SPARQL standards. Very fast and scales to hundreds of billions of triples on a single commodity machine. Sounds to good to be true, anyone tested this out? https://lnkd.in/esXKt79J #GraphDatbase #ontology #RDF | 14 comments on LinkedIn
·linkedin.com·
QLever user testimonials
Labeled Meta Property Graphs (LMPG): A Property-Centric Approach to Graph Database Architecture
Labeled Meta Property Graphs (LMPG): A Property-Centric Approach to Graph Database Architecture
Discover how LMPG transforms graph databases by treating properties as first-class citizens rather than simple node attributes. This comprehensive technical guide explores RushDB's groundbreaking architecture that enables automatic schema evolution, property-first queries, and cross-domain analytics impossible in traditional property graphs or RDF systems.
·rushdb.com·
Labeled Meta Property Graphs (LMPG): A Property-Centric Approach to Graph Database Architecture
Flexible-GraphRAG
Flexible-GraphRAG
𝗙𝗹𝗲𝘅𝗶𝗯𝗹𝗲 𝗚𝗿𝗮𝗽𝗵𝗥𝗔𝗚 𝗼𝗿 𝗥𝗔𝗚 is now flexing to the max using LlamaIndex, supports 𝟳 𝗴𝗿𝗮𝗽𝗵 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲𝘀, 𝟭𝟬 𝘃𝗲𝗰𝘁𝗼𝗿 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲𝘀, 𝟭𝟯 𝗱𝗮𝘁𝗮 𝘀𝗼𝘂𝗿𝗰𝗲𝘀, 𝗟𝗟𝗠𝘀, Docling 𝗱𝗼𝗰 𝗽𝗿𝗼𝗰𝗲𝘀𝘀𝗶𝗻𝗴, 𝗮𝘂𝘁𝗼 𝗰𝗿𝗲𝗮𝘁𝗲 𝗞𝗚𝘀, 𝗚𝗿𝗮𝗽𝗵𝗥𝗔𝗚, 𝗛𝘆𝗯𝗿𝗶𝗱 𝗦𝗲𝗮𝗿𝗰𝗵, 𝗔𝗜 𝗖𝗵𝗮𝘁 (shown Hyland products web page data src) 𝗔𝗽𝗮𝗰𝗵𝗲 𝟮.𝟬 𝗢𝗽𝗲𝗻 𝗦𝗼𝘂𝗿𝗰𝗲 𝗚𝗿𝗮𝗽𝗵: Neo4j ArcadeDB FalkorDB Kuzu NebulaGraph, powered by Vesoft (coming Memgraph and 𝗔𝗺𝗮𝘇𝗼𝗻 𝗡𝗲𝗽𝘁𝘂𝗻𝗲) 𝗩𝗲𝗰𝘁𝗼𝗿: Qdrant, Elastic, OpenSearch Project, Neo4j 𝘃𝗲𝗰𝘁𝗼𝗿, Milvus, created by Zilliz (coming Weaviate, Chroma, Pinecone, 𝗣𝗼𝘀𝘁𝗴𝗿𝗲𝗦𝗤𝗟 + 𝗽𝗴𝘃𝗲𝗰𝘁𝗼𝗿, LanceDB) Docling 𝗱𝗼𝗰𝘂𝗺𝗲𝗻𝘁 𝗽𝗿𝗼𝗰𝗲𝘀𝘀𝗶𝗻𝗴 𝗗𝗮𝘁𝗮 𝗦𝗼𝘂𝗿𝗰𝗲𝘀: using LlamaIndex readers: working: Web Pages, Wikipedia, Youtube, untested: Google Drive, Msft OneDrive, S3, Azure Blob, GCS, Box, SharePoint, previous: filesystem, Alfresco, CMIS. 𝗟𝗟𝗠𝘀: 𝗟𝗹𝗮𝗺𝗮𝗜𝗻𝗱𝗲𝘅 𝗟𝗟𝗠𝘀 (OpenAI, Ollama, Claude, Gemini, etc.) 𝗥𝗲𝗮𝗰𝘁, 𝗩𝘂𝗲, 𝗔𝗻𝗴𝘂𝗹𝗮𝗿 𝗨𝗜𝘀, 𝗠𝗖𝗣 𝘀𝗲𝗿𝘃𝗲𝗿, 𝗙𝗮𝘀𝘁𝗔𝗣𝗜 𝘀𝗲𝗿𝘃𝗲𝗿 𝗚𝗶𝘁𝗛𝘂𝗯 𝘀𝘁𝗲𝘃𝗲𝗿𝗲𝗶𝗻𝗲𝗿/𝗳𝗹𝗲𝘅𝗶𝗯𝗹𝗲-𝗴𝗿𝗮𝗽𝗵𝗿𝗮𝗴: https://lnkd.in/eUEeF2cN 𝗫.𝗰𝗼𝗺 𝗣𝗼𝘀𝘁 𝗼𝗻 𝗙𝗹𝗲𝘅𝗶𝗯𝗹𝗲 𝗚𝗿𝗮𝗽𝗵𝗥𝗔𝗚 𝗼𝗿 𝗥𝗔𝗚 𝗺𝗮𝘅 𝗳𝗹𝗲𝘅𝗶𝗻𝗴 https://lnkd.in/gHpTupAr 𝗜𝗻𝘁𝗲𝗴𝗿𝗮𝘁𝗲𝗱 𝗦𝗲𝗺𝗮𝗻𝘁𝗶𝗰𝘀 𝗕𝗹𝗼𝗴: https://lnkd.in/ehpjTV7d
·linkedin.com·
Flexible-GraphRAG
Announcing the formation of a Data Façades W3C Community Group
Announcing the formation of a Data Façades W3C Community Group
I am excited to announce the formation of a Data Façades W3C Community Group. Façade-X, initially introduced at SEMANTICS 2021 and successfully implemented by the SPARQL Anything project, provides a simple yet powerful, homogeneous view over diverse and heterogeneous data sources (e.g., CSV, JSON, XML, and many others). With the recent v1.0.0 release of SPARQL Anything, the time was right to work on the long-term stability and widespread adoption of this approach by developing an open, vendor-neutral technology. The Façade-X concept was born to allow SPARQL users to query data in any structured format in plain SPARQL. Therefore, the choice of a W3C community group to lead efforts on specifications is just natural. Specifications will enhance its reliability, foster innovation, and encourage various vendors and projects—including graph database developers — to provide their own compatible implementations. The primary goals of the Data Façades Community Group is to: Define the core specification of the Façade-X method. Define Standard Mappings: Formalize the required mappings and profiles for connecting Façade-X to common data formats. Define the specification of the query dialect: Provide a reference for the SPARQL dialect, configuration conventions (like SERVICE IRIs), and the functions/magic properties used. Establish Governance: Create a monitored, robust process for adding support for new data formats. Foster Collaboration: Build connections with relevant W3C groups (e.g., RDF & SPARQL, Data Shapes) and encourage involvement from developers, businesses, and adopters. Join us! With Luigi Asprino Ivo Velitchkov Justin Dowdy Paul Mulholland Andy Seaborne Ryan Shaw ... CG: https://lnkd.in/eSxuqsvn Github: https://lnkd.in/dkHGT8N3 SPARQL Anything #RDF #SPARQL #W3C #FX
announce the formation of a Data Façades W3C Community Group
·linkedin.com·
Announcing the formation of a Data Façades W3C Community Group
You Don't Need a Graph DB
You Don't Need a Graph DB
Many teams adopt graph databases believing they need specialized tools for relationship data, adding unnecessary complexity to their stack. This session reveals that for most use cases, the performance benefits don't justify the overhead. You'll learn to evaluate whether you truly need graph DB capabilities and how to implement graph patterns using simpler alternatives.
·maven.com·
You Don't Need a Graph DB
Introducing Brahmand: a Graph Database built on top of ClickHouse
Introducing Brahmand: a Graph Database built on top of ClickHouse
Introducing Brahmand: a Graph Database built on top of ClickHouse. Extending ClickHouse with native graph modeling and OpenCypher, merging OLAP speed with graph analysis. While it’s still in early development, it’s been fun writing my own Cypher parser, query planner with logical plan, analyzer, and optimizer in Rust. On the roadmap: native JSON support, bolt protocol, missing Cypher features like WITH, EXISTS, and variable-length relationship matches, along with bitmap-based optimizations and distributed cluster support. Feel free to check out the repo: https://lnkd.in/d-Bhh-qD I’d really appreciate a ⭐ if you find it useful!
Introducing Brahmand: a Graph Database built on top of ClickHouse
·linkedin.com·
Introducing Brahmand: a Graph Database built on top of ClickHouse
Stop Context Switching: Directly Run ISO GQL Queries in VS Code | LinkedIn
Stop Context Switching: Directly Run ISO GQL Queries in VS Code | LinkedIn
Ever caught yourself bouncing between your code editor and database client just to test a single query? Annoying, right? That context switching kills your flow. Now you can bring the Ultipa VS Code Extensions for ISO GQL to your workflow! Write, validate, and execute ISO GQL queries right where you
·linkedin.com·
Stop Context Switching: Directly Run ISO GQL Queries in VS Code | LinkedIn
A Comparative Analysis of Vector and Graph Database Semantics | LinkedIn
A Comparative Analysis of Vector and Graph Database Semantics | LinkedIn
Executive Summary While both Vector Databases and Graph Databases are pivotal technologies in modern artificial intelligence (AI) and data management, they operate on fundamentally different principles of data organization and retrieval. Vector Databases manage data based on statistical similarity w
·linkedin.com·
A Comparative Analysis of Vector and Graph Database Semantics | LinkedIn