Found 241 bookmarks
Custom sorting
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval This Multi-Granular Graph Framework uses PageRank and Keyword-Chunk Graph to have the Best Cost-Quality Tradeoff ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》The Problem: Knowledge Graphs Are Expensive (and Clunky) AI agents need context to answer complex questions—like connecting “COVID vaccines” to “myocarditis risks” across research papers. But today’s solutions face two nightmares: ✸ Cost: Building detailed knowledge graphs with LLMs can cost $33,000 for a 5GB legal case. ✸ Quality: Cheap methods (like KNN graphs) miss key relationships, leading to 32% worse answers. ☆ Imagine training an AI doctor that either bankrupts you or misdiagnoses patients. Ouch. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》The Fix: KET-RAG’s Two-Layer Brain KET-RAG merges precision (knowledge graphs) and efficiency (keyword-text maps) into one system: ✸ Layer 1: Knowledge Graph Skeleton ☆ Uses PageRank to find core text chunks (like “vaccine side effects” in medical docs). ☆ Builds a sparse graph only on these chunks with LLMs—saving 80% of indexing costs. ✸ Layer 2: Keyword-Chunk Bipartite Graph ☆ Links keywords (e.g., “myocarditis”) to all related text snippets—no LLM needed. ☆ Acts as a “fast lane” for retrieving context without expensive entity extraction. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》Results: Beating Microsoft’s Graph-RAG with Pennies On HotpotQA and MuSiQue benchmarks, KET-RAG: ✸ Retrieves 81.6% of critical info vs. Microsoft’s 74.6%—with 10x lower cost. ✸ Boosts answer accuracy (F1 score) by 32.4% while cutting indexing bills by 20%. ✸ Scales to terabytes of data without melting budgets. ☆ Think of it as a Tesla Model 3 outperforming a Lamborghini at 1/10th the price. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》Why AI Agents Need This AI agents aren’t just chatbots—they’re problem solvers for medicine, law, and customer service. KET-RAG gives them: ✸ Real-time, multi-hop reasoning: Connecting “drug A → gene B → side effect C” in milliseconds. ✸ Cost-effective scalability: Deploying agents across millions of documents without going broke. ✸ Adaptability: Mixing precise knowledge graphs (for critical data) with keyword maps (for speed). Paper in comments ≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣ 》Build Your Own Supercharged AI Agent? 🔮 Join My 𝐇𝐚𝐧𝐝𝐬-𝐎𝐧 𝐀𝐈 𝐀𝐠𝐞𝐧𝐭𝐬 𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 TODAY! and Learn Building AI Agent with Langgraph/Langchain, CrewAI and OpenAI Swarm + RAG Pipelines 𝐄𝐧𝐫𝐨𝐥𝐥 𝐍𝐎𝐖 [34% discount]: 👉 https://lnkd.in/eGuWr4CH | 10 comments on LinkedIn
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
·linkedin.com·
KET-RAG: Turbocharging AI Agents with 10x Cheaper, Smarter Knowledge Retrieval
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
🌟 TGB 2.0 @NeurIPS 2024 🌟 We are very happy to share that our paper TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs… | 11 comments on LinkedIn
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
·linkedin.com·
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
graphgeeks-lab/awesome-graph-universe: A curated list of resources for graph-related topics, including graph databases, analytics and science
graphgeeks-lab/awesome-graph-universe: A curated list of resources for graph-related topics, including graph databases, analytics and science
A curated list of resources for graph-related topics, including graph databases, analytics and science - graphgeeks-lab/awesome-graph-universe
Awesome Graph Universe 🌐 Welcome to Awesome Graph Universe, a curated list of resources, tools, libraries, and applications for working with graphs and networks. This repository covers everything from Graph Databases and Knowledge Graphs to Graph Analytics, Graph Computing, and beyond. Graphs and networks are essential in fields like data science, knowledge representation, machine learning, and computational biology. Our goal is to provide a comprehensive resource that helps researchers, developers, and enthusiasts explore and utilize graph-based technologies. Feel free to contribute by submitting pull requests! 🚀
·github.com·
graphgeeks-lab/awesome-graph-universe: A curated list of resources for graph-related topics, including graph databases, analytics and science
A Survey of Large Language Models for Graphs
A Survey of Large Language Models for Graphs
🚀 What happens when LLMs meet Graphs? 🔍 Excited to share our new [#KDD'2024] Survey+Tutorial on 🌟LLM4Graph🌟: "A Survey of Large Language Models for…
A Survey of Large Language Models for Graphs
·linkedin.com·
A Survey of Large Language Models for Graphs
Language, Graphs, and AI in Industry
Language, Graphs, and AI in Industry
Over the past 5 years, news about AI has been filled with amazing research – at first focused on graph neural networks (GNNs) and more recently about large language models (LLMs). Understand that business tends to use connected data – networks, graphs – whether you’re untangling supply networks in Manufacturing, working on drug discovery for Pharma, or mitigating fraud in Finance. Starting from supplier agreements, bill of materials, internal process docs, sales contracts, etc., there’s a graph inside nearly every business process, one that is defined by language. This talk addresses how to leverage both natural language and graph technologies together for AI applications in industry. We’ll look at how LLMs get used to build and augment graphs, and conversely how graph data gets used to ground LLMs for generative AI use cases in industry – where a kind of “virtuous cycle” is emerging for feedback loops based on graph data. Our team has been engaged, on the one hand, with enterprise use cases in manufacturing. On the other hand we’ve worked as intermediaries between research teams funded by enterprise and open source projects needed by enterprise – particularly in the open source ecosystem for AI models. Also, there are caveats; this work is not simple. Translating from latest research into production-ready code is especially complex and expensive. Let’s examine caveats which other teams should understand, and look toward practical examples.
·derwen.ai·
Language, Graphs, and AI in Industry
Vectors need Graphs!
Vectors need Graphs!
Vectors need Graphs! Embedding vectors are a pivotal tool when using Generative AI. While vectors might initially seem an unlikely partner to graphs, their… | 61 comments on LinkedIn
Vectors need Graphs!
·linkedin.com·
Vectors need Graphs!
From data to knowledge and AI via graphs: Technology to support a knowledge-based economy
From data to knowledge and AI via graphs: Technology to support a knowledge-based economy
In the new knowledge-based digital world, encoding and making use of business and operational knowledge is the key to making progress and staying competitive. Here's a shortlist of technologies and processes that can support this transition, and what they are about.
·zdnet.com·
From data to knowledge and AI via graphs: Technology to support a knowledge-based economy