Found 29 bookmarks
Custom sorting
Google Cloud & Neo4j: Teaming Up at the Intersection of Knowledge Graphs, Agents, MCP, and Natural Language Interfaces - Graph Database & Analytics
Google Cloud & Neo4j: Teaming Up at the Intersection of Knowledge Graphs, Agents, MCP, and Natural Language Interfaces - Graph Database & Analytics
We’re thrilled to announce new Text2Cypher models and Google’s MCP Toolbox for Databases from the collaboration between Google Cloud and Neo4j.
·neo4j.com·
Google Cloud & Neo4j: Teaming Up at the Intersection of Knowledge Graphs, Agents, MCP, and Natural Language Interfaces - Graph Database & Analytics
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning ... 👉 Why This Matters Most AI systems blend knowledge graphs (structured data) with large language models (flexible reasoning). But there’s a hidden variable: "how" you translate the graph into text for the AI. Researchers discovered that the formatting choice alone can swing performance by up to "17.5%" on reasoning tasks. Imagine solving 1 in 5 more problems correctly just by adjusting how you present data. 👉 What They Built KG-LLM-Bench is a new benchmark to test how language models reason with knowledge graphs. It includes five tasks: - Triple verification (“Does this fact exist?”) - Shortest path finding (“How are two concepts connected?”) - Aggregation (“How many entities meet X condition?”) - Multi-hop reasoning (“Which entities linked to A also have property B?”) - Global analysis (“Which node is most central?”) The team tested seven models (Claude, GPT-4o, Gemini, Llama, Nova) with five ways to “textualize” graphs, from simple edge lists to structured JSON and semantic web formats like RDF Turtle. 👉 Key Insights 1. Format matters more than assumed:   - Structured JSON and edge lists performed best overall, but results varied by task.   - For example, JSON excels at aggregation tasks (data is grouped by entity), while edge lists help identify central nodes (repeated mentions highlight connections). 2. Models don’t cheat: Replacing real entity names with fake ones (e.g., “France” → “Verdania”) caused only a 0.2% performance drop, proving models rely on context, not memorized knowledge. 3. Token efficiency:   - Edge lists used ~2,600 tokens vs. JSON-LD’s ~13,500. Shorter formats free up context space for complex reasoning.   - But concise ≠ always better: structured formats improved accuracy for tasks requiring grouped data. 4. Models struggle with directionality:   Counting outgoing edges (e.g., “Which countries does France border?”) is easier than incoming ones (“Which countries border France?”), likely due to formatting biases. 👉 Practical Takeaways - Optimize for your task: Use JSON for aggregation, edge lists for centrality. - Test your model: The best format depends on the LLM—Claude thrived with RDF Turtle, while Gemini preferred edge lists. - Don’t fear pseudonyms: Masking real names minimally impacts performance, useful for sensitive data. The benchmark is openly available, inviting researchers to add new tasks, graphs, and models. As AI handles larger knowledge bases, choosing the right “data language” becomes as critical as the reasoning logic itself. Paper: [KG-LLM-Bench: A Scalable Benchmark for Evaluating LLM Reasoning on Textualized Knowledge Graphs] Authors: Elan Markowitz, Krupa Galiya, Greg Ver Steeg, Aram Galstyan
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
·linkedin.com·
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
Knowledge graphs for LLM grounding and avoiding hallucination
Knowledge graphs for LLM grounding and avoiding hallucination
This blog post is part of a series that dives into various aspects of SAP’s approach to Generative AI, and its technical underpinnings. In previous blog posts of this series, you learned about how to use large language models (LLMs) for developing AI applications in a trustworthy and reliable manner...
·community.sap.com·
Knowledge graphs for LLM grounding and avoiding hallucination
Multi-Layer Agentic Reasoning: Connecting Complex Data and Dynamic Insights in Graph-Based RAG Systems
Multi-Layer Agentic Reasoning: Connecting Complex Data and Dynamic Insights in Graph-Based RAG Systems
Multi-Layer Agentic Reasoning: Connecting Complex Data and Dynamic Insights in Graph-Based RAG Systems 🛜 At the most fundamental level, all approaches rely… | 11 comments on LinkedIn
Multi-Layer Agentic Reasoning: Connecting Complex Data and Dynamic Insights in Graph-Based RAG Systems
·linkedin.com·
Multi-Layer Agentic Reasoning: Connecting Complex Data and Dynamic Insights in Graph-Based RAG Systems
Build your hybrid-Graph for RAG & GraphRAG applications using the power of NLP | LinkedIn
Build your hybrid-Graph for RAG & GraphRAG applications using the power of NLP | LinkedIn
Build a graph for RAG application for a price of a chocolate bar! What is GraphRAG for you? What is GraphRAG? What does GraphRAG mean from your perspective? What if you could have a standard RAG and a GraphRAG as a combi-package, with just a query switch? The fact is, there is no concrete, universal
·linkedin.com·
Build your hybrid-Graph for RAG & GraphRAG applications using the power of NLP | LinkedIn
MiniRAG Introduces Near-LLM Accurate RAG for Small Language Models with Just 25% of the Storage
MiniRAG Introduces Near-LLM Accurate RAG for Small Language Models with Just 25% of the Storage
🏆🚣MiniRAG Introduces Near-LLM Accurate RAG for Small Language Models with Just 25% of the Storage. Achieving that by Semantic-Aware Heterogeneous Graph…
MiniRAG Introduces Near-LLM Accurate RAG for Small Language Models with Just 25% of the Storage
·linkedin.com·
MiniRAG Introduces Near-LLM Accurate RAG for Small Language Models with Just 25% of the Storage
MiniRAG Introduces Near-LLM Accurate RAG for Small Language Models with Just 25% of the Storage
MiniRAG Introduces Near-LLM Accurate RAG for Small Language Models with Just 25% of the Storage
🏆🚣MiniRAG Introduces Near-LLM Accurate RAG for Small Language Models with Just 25% of the Storage. Achieving that by Semantic-Aware Heterogeneous Graph…
MiniRAG Introduces Near-LLM Accurate RAG for Small Language Models with Just 25% of the Storage
·linkedin.com·
MiniRAG Introduces Near-LLM Accurate RAG for Small Language Models with Just 25% of the Storage
Adaptive Graph of Thoughts (AGoT), a test-time framework that replaces rigid prompting strategies (like Chain/Tree of Thought) with dynamic directed acyclic graphs
Adaptive Graph of Thoughts (AGoT), a test-time framework that replaces rigid prompting strategies (like Chain/Tree of Thought) with dynamic directed acyclic graphs
Dynamic Reasoning Graphs + LLMs = 🤝 Large Language Models (LLMs) often stumble on complex tasks when confined to linear reasoning. What if they could dynamically restructure their thought process like humans? A new paper introduces Adaptive Graph of Thoughts (AGoT), a test-time framework that replaces rigid prompting strategies (like Chain/Tree of Thought) with dynamic directed acyclic graphs (DAGs). Instead of forcing fixed reasoning steps, AGoT recursively decomposes problems into sub-tasks, selectively expanding only the most critical pathways. This is crucial for industries like scientific research or legal analysis, where problems demand non-linear, nested reasoning. The key innovation lies in complexity checks: AGoT assesses each reasoning node, spawning sub-graphs for intricate subtasks while resolving simpler ones directly. This mirrors how experts allocate mental effort—drilling into uncertainties while streamlining obvious steps. The framework achieved 46.2% improvement on GPQA (a notoriously hard science QA benchmark), rivaling gains from compute-heavy fine-tuning. By unifying chain, tree, and graph paradigms, AGoT retains CoT’s clarity, ToT’s exploration, and GoT’s flexibility without manual tuning. The result? LLMs that self-adapt their reasoning depth based on problem complexity—no architectural changes needed. For AI practitioners, AGoT’s DAG structure offers a principled interface to scale reasoning modularly. ↓ 𝐖𝐚𝐧𝐧𝐚 𝐤𝐧𝐨𝐰 𝐰𝐡𝐚𝐭 𝐲𝐨𝐮 𝐦𝐢𝐬𝐬𝐞𝐝? Join my newsletter with 50k+ readers that breaks down all you need to know about the latest LLM research: llmwatch.com 💡
Adaptive Graph of Thoughts (AGoT), a test-time framework that replaces rigid prompting strategies (like Chain/Tree of Thought) with dynamic directed acyclic graphs
·linkedin.com·
Adaptive Graph of Thoughts (AGoT), a test-time framework that replaces rigid prompting strategies (like Chain/Tree of Thought) with dynamic directed acyclic graphs
A comparison between ChatGPT and DeepSeek capabilities writing a valid Cypher query
A comparison between ChatGPT and DeepSeek capabilities writing a valid Cypher query
Today, I conducted a comparison between ChatGPT and DeepSeek chat capabilities by providing them with a schema and a natural language question. I tasked them…
a comparison between ChatGPT and DeepSeek chat capabilities by providing them with a schema and a natural language question. I tasked them with writing a valid Cypher query to answer the question.
·linkedin.com·
A comparison between ChatGPT and DeepSeek capabilities writing a valid Cypher query