Unlocking universal reasoning across knowledge graphs
Unlocking universal reasoning across knowledge graphs. Knowledge graphs (KGs) are powerful tools for organizing and reasoning over vast amounts of… | 11 comments on LinkedIn
Unlocking universal reasoning across knowledge graphs.
takeaways from the International Semantic Web Conference #iswc2024
My takeaways from the International Semantic Web Conference #iswc2024 Ioana keynote: Great example of data integration for journalism, highlighting the use of…
takeaways from the International Semantic Web Conference hashtag#iswc2024
Beyond Vector Space : Knowledge Graphs and the New Frontier of Agentic System Accuracy
Beyond Vector Space : Knowledge Graphs and the New Frontier of Agentic System Accuracy ⛳ In the realm of agentic systems, a fundamental challenge emerges…
Beyond Vector Space : Knowledge Graphs and the New Frontier of Agentic System Accuracy
Understanding SPARQL Queries: Are We Already There
👉 Our paper "Understanding SPARQL Queries: Are We Already There?", explores the potential of Large Language Models (#LLMs) to generate natural-language…
Understanding SPARQL Queries: Are We Already There
500 million+ members | Manage your professional identity. Build and engage with your professional network. Access knowledge, insights and opportunities.
Knowledge Graph Enhanced Language Agents for Recommendation
Language agents have recently been used to simulate human behavior and user-item interactions for recommendation systems. However, current language agent simulations do not understand the...
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
🌟 TGB 2.0 @NeurIPS 2024 🌟 We are very happy to share that our paper TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs… | 11 comments on LinkedIn
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
More Graph, More Agents: Scaling Graph Reasoning with LLMs
More Graph, More Agents: Scaling Graph Reasoning with LLMs Graph reasoning tasks have proven to be a tough nut to crack for Large Language Models (LLMs).…
More Graph, More Agents: Scaling Graph Reasoning with LLMs
Unlocking universal reasoning across knowledge graphs. Knowledge graphs (KGs) are powerful tools for organizing and reasoning over vast amounts of… | 13 comments on LinkedIn
UltraQuery: going beyond simple one-hop link prediction to answering more complex queries on any graph in the zero-shot fashion better than trainable SOTA
📣 Foundation models for graph reasoning become even stronger - in our new NeurIPS 2024 work we introduce UltraQuery: going beyond simple one-hop link…
UltraQuery: going beyond simple one-hop link prediction to answering more complex queries on any graph in the zero-shot fashion better than trainable SOTA
Recently, knowledge-graph-enhanced recommendation systems have attracted much attention, since knowledge graph (KG) can help improving the dataset quality and offering rich semantics for explainable recommendation. However, current KG-enhanced solutions focus on analyzing user behaviors on the product level and lack effective approaches to extract user preference towards product category, which is essential for better recommendation because users shopping online normally have strong preference towards distinctive product categories, not merely on products, according to various user studies. Moreover, the existing pure embedding-based recommendation methods can only utilize KGs with a limited size, which is not adaptable to many real-world applications. In this paper, we generalize the recommendation problem with preference mining as a compound knowledge reasoning task and propose a novel multi-agent system, called Mcore, which can promote model performance by mining users’ high-level interests and is adaptable to large KGs. Specifically, we split the overall problem and allocate sub-task to each agent: Coordinate Agent takes charge of recognizing the product-category preference of current user, while Relation Agent and Entity Agent perform KG reasoning cooperatively from a user node towards the preferred categories and terminate at a product node as recommendation. To train this heterogeneous multi-agent system, where agents own various functionalities, we propose an asynchronous reinforcement training pipeline, called Multi-agent Collaborative Learning. The extensive experiments on real datasets demonstrate the effectiveness and adaptability of Mcore on recommendation tasks.
In this work, we achieve perfect neural execution of several algorithms by forcing the node and edge representations to be from a fixed finite set. Also, the proposed architectural choice allows us to prove the correctness of the learned algorithms for any test data.
Can Graph Reordering Speed Up Graph Neural Network Training? An...
Graph neural networks (GNNs) are a type of neural network capable of learning on graph-structured data. However, training GNNs on large-scale graphs is challenging due to iterative aggregations of...
The growing ubiquity of relational data structured as graphs has underscored the need for graph learning models with exceptional generalization capabilities. However, current approaches often...
From Semiotic to Digital Enterprise Semantic Interoperability
"From Semiotic to Digital Enterprise Semantic Interoperability? Translation in english with some completion of my last article in French. Enterprises are…
From Semiotic to Digital Enterprise Semantic Interoperability
Graph Artificial Intelligence in Medicine | Annual Reviews
In clinical artificial intelligence (AI), graph representation learning, mainly through graph neural networks and graph transformer architectures, stands out for its capability to capture intricate relationships and structures within clinical datasets. With diverse data—from patient records to imaging—graph AI models process data holistically by viewing modalities and entities within them as nodes interconnected by their relationships. Graph AI facilitates model transfer across clinical tasks, enabling models to generalize across patient populations without additional parameters and with minimal to no retraining. However, the importance of human-centered design and model interpretability in clinical decision-making cannot be overstated. Since graph AI models capture information through localized neural transformations defined on relational datasets, they offer both an opportunity and a challenge in elucidating model rationale. Knowledge graphs can enhance interpretability by aligning model-driven insights with medical knowledge. Emerging graph AI models integrate diverse data modalities through pretraining, facilitate interactive feedback loops, and foster human–AI collaboration, paving the way toward clinically meaningful predictions.
Fact Finder -- Enhancing Domain Expertise of Large Language Models...
Recent advancements in Large Language Models (LLMs) have showcased their proficiency in answering natural language queries. However, their effectiveness is hindered by limited domain-specific...
Recently, Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining. By referencing an...
LLMs and Knowledge Graphs: A love story 💓 Researchers from University of Oxford recently released MedGraphRAG. At its core, MedGraphRAG is a framework…
Think-on-Graph 2.0: Deep and Interpretable Large Language Model...
Retrieval-augmented generation (RAG) has significantly advanced large language models (LLMs) by enabling dynamic information retrieval to mitigate knowledge gaps and hallucinations in generated...
ReLiK: Retrieve and LinK, Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget
✨ Attention Information Extraction Enthusiasts ✨ I am excited to announce the release of our latest paper and model family, ReLiK, a cutting-edge… | 33 comments on LinkedIn
Learning production functions for supply chains with graph neural networks
The global economy relies on the flow of goods over supply chain networks, with nodes as firms and edges as transactions between firms. While we may observe these external transactions, they are...
Foundations and Frontiers of Graph Learning Theory
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures. Notably, Graph Neural Networks (GNNs), i.e. neural network architectures...
Foundations and Frontiers of Graph Learning Theory