Found 70 bookmarks
Custom sorting
Graphs + Transformers = the best of both worlds
Graphs + Transformers = the best of both worlds
Graphs + Transformers = the best of both worlds ๐Ÿค The same models powering breakthroughs in natural language processing are now being adapted for graphsโ€ฆ
Graphs + Transformers = the best of both worlds
ยทlinkedin.comยท
Graphs + Transformers = the best of both worlds
Knowledge Graph In-Context Learning
Knowledge Graph In-Context Learning
Unlocking universal reasoning across knowledge graphs. Knowledge graphs (KGs) are powerful tools for organizing and reasoning over vast amounts ofโ€ฆ | 13 comments on LinkedIn
Knowledge Graph In-Context Learning
ยทlinkedin.comยท
Knowledge Graph In-Context Learning
Graph-constrained Reasoning
Graph-constrained Reasoning
๐Ÿš€ Exciting New Research: "Graph-constrained Reasoning (GCR)" - Enabling Faithful KG-grounded LLM Reasoning with Zero Hallucination! ๐Ÿง  ๐ŸŽ‰ Proud to share ourโ€ฆ | 11 comments on LinkedIn
Graph-constrained Reasoning
ยทlinkedin.comยท
Graph-constrained Reasoning
Medical Graph RAG
Medical Graph RAG
LLMs and Knowledge Graphs: A love story ๐Ÿ’“ Researchers from University of Oxford recently released MedGraphRAG. At its core, MedGraphRAG is a frameworkโ€ฆ
ยทlinkedin.comยท
Medical Graph RAG
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
๐—ฅ๐—”๐—š ๐—œ๐—บ๐—ฝ๐—น๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—™๐—ฎ๐—ถ๐—น ๐——๐˜‚๐—ฒ ๐—ง๐—ผ ๐—œ๐—ป๐˜€๐˜‚๐—ณ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜ ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ ๐—ข๐—ป ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป ๐—œ๐—ป๐˜๐—ฒ๐—ป๐˜ ๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Žโ€ฆ | 12 comments on LinkedIn
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
ยทlinkedin.comยท
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
This is something very cool! 3. GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models "GraphReader addresses theโ€ฆ
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
ยทlinkedin.comยท
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected - SynaLinks/HybridAGI
ยทgithub.comยท
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Ask your (research) question against 76 Million scientific articles: https://ask.orkg.org Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientificโ€ฆ
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
ยทlinkedin.comยท
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Synergizing LLMs and KGs in the GenAI Landscape | LinkedIn
Synergizing LLMs and KGs in the GenAI Landscape | LinkedIn
Our paper "Are Large Language Models a Good Replacement of Taxonomies?" was just accepted to VLDB'2024! This finished our last stroke of study on how knowledgeable LLMs are and confirmed our recommendation for the next generation of KGs. How knowledgeable are LLMs? 1.
ยทlinkedin.comยท
Synergizing LLMs and KGs in the GenAI Landscape | LinkedIn
Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
Introducing Docs2KG: A New Era in Knowledge Graph Construction from Unstructured Data ... Did you know that 80% of enterprise data resides in unstructuredโ€ฆ | 13 comments on LinkedIn
Docs2KG: A New Era in Knowledge Graph Construction from Unstructured Data
ยทlinkedin.comยท
Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
An approach for designing learning path recommendations using GPT-4 and Knowledge Graphs
An approach for designing learning path recommendations using GPT-4 and Knowledge Graphs
๐Ÿ’กย How important are learning paths for gaining the skills needed to tackle real-life problems? ๐Ÿ”ฌResearchers from the University of Siegen (Germany) and Keioโ€ฆ
an approach for designing learning path recommendations using GPT-4 and Knowledge Graphs
ยทlinkedin.comยท
An approach for designing learning path recommendations using GPT-4 and Knowledge Graphs