Found 16 bookmarks
Custom sorting
Semantically Composable Architectures
Semantically Composable Architectures
I'm happy to share the draft of the "Semantically Composable Architectures" mini-paper. It is the culmination of approximately four years' work, which began with Coreless Architectures and has now evolved into something much bigger. LLMs are impressive, but a real breakthrough will occur once we surpass the cognitive capabilities of a single human brain. Enabling autonomous large-scale system reverse engineering and large-scale autonomous transformation with minimal to no human involvement, while still making it understandable to humans if they choose to, is a central pillar of making truly groundbreaking changes. We hope the ideas we shared will be beneficial to humanity and advance our civilization further. It is not final and will require some clarification and improvements, but the key concepts are present. Happy to hear your thoughts and feedback. Some of these concepts underpin the design of the Product X system. Part of the core team + external contribution: Andrew Barsukov Andrey Kolodnitsky Sapta Girisa N Keith E. Glendon Gurpreet Sachdeva Saurav Chandra Mike Diachenko Oleh Sinkevych | 13 comments on LinkedIn
Semantically Composable Architectures
·linkedin.com·
Semantically Composable Architectures
Unified Foundational Ontology
Unified Foundational Ontology
On request, this is the complete slide deck I used in my course at the C-FORS summer school on Foundational Ontologies (see https://lnkd.in/e9Af5JZF) at the University of Oslo, Norway. If you want to know more, here are some papers related to the talk: On the ontology itself: a) for a gentle introduction to UFO: https://lnkd.in/egS5FsQ b) to understand the UFO history and ecosystem (including OntoUML): https://lnkd.in/emCaX5pF c) a more formal paper on the axiomatization of UFO but also with examples (in OntoUML): https://lnkd.in/e_bUuTMa d) focusing on UFO's theory of Types and Taxonomic Structures: https://lnkd.in/eGPXHeh e) focusing on its Theory of Relations (including relationship reification): https://lnkd.in/eTFFRBy8 and https://lnkd.in/eMNmi7-B f) focusing on Qualities and Modes (aspect reification): https://lnkd.in/eNXbrKrW and https://lnkd.in/eQtNC9GH g) focusing on events and processes: https://lnkd.in/e3Z8UrCD, https://lnkd.in/ePZEaJh9, https://lnkd.in/eYnirFv6, https://lnkd.in/ev-cb7_e, https://lnkd.in/e_nTwBc7 On the tools: a) Model Auto-repair and Constraint Learning: https://lnkd.in/esuYSU9i b) Model Validation and Anti-Pattern Detection: https://lnkd.in/e2SxvVzS c) Ontological Patterns and Pattern Grammars: https://lnkd.in/exMFMgpT and https://lnkd.in/eCeRtMNz d) Multi-Level Modeling: https://lnkd.in/eVavvURk and https://lnkd.in/e8t3sMdU e) Complexity Management: https://lnkd.in/eq3xWp-U f) FAIR catalog of models and Pattern Mining: https://lnkd.in/eaN5d3QR and https://lnkd.in/ecjhfp8e g) Anti-Patterns on Wikidata: https://lnkd.in/eap37SSU h) Model Transformation/implementation: https://lnkd.in/eh93u5Hg, https://lnkd.in/e9bU_9NC, https://lnkd.in/eQtNC9GH, https://lnkd.in/esGS8ZTb #ontology #UFO #ontologies #foundationalontology #toplevelontology #TLO Semantics, Cybersecurity, and Services (SCS)/University of Twente
·linkedin.com·
Unified Foundational Ontology
Digital evolution: Novo Nordisk’s shift to ontology-based data management - Journal of Biomedical Semantics
Digital evolution: Novo Nordisk’s shift to ontology-based data management - Journal of Biomedical Semantics
The amount of biomedical data is growing, and managing it is increasingly challenging. While Findable, Accessible, Interoperable and Reusable (FAIR) data principles provide guidance, their adoption has proven difficult, especially in larger enterprises like pharmaceutical companies. In this manuscript, we describe how we leverage an Ontology-Based Data Management (OBDM) strategy for digital transformation in Novo Nordisk Research & Early Development. Here, we include both our technical blueprint and our approach for organizational change management. We further discuss how such an OBDM ecosystem plays a pivotal role in the organization’s digital aspirations for data federation and discovery fuelled by artificial intelligence. Our aim for this paper is to share the lessons learned in order to foster dialogue with parties navigating similar waters while collectively advancing the efforts in the fields of data management, semantics and data driven drug discovery.
·jbiomedsem.biomedcentral.com·
Digital evolution: Novo Nordisk’s shift to ontology-based data management - Journal of Biomedical Semantics
Enterprise Ontology: A Human-Centric Approach to Understanding the Essence of Organisation : Dietz, Jan L. G., Mulder, Hans B. F.: Amazon.nl: Boeken
Enterprise Ontology: A Human-Centric Approach to Understanding the Essence of Organisation : Dietz, Jan L. G., Mulder, Hans B. F.: Amazon.nl: Boeken
Enterprise Ontology: A Human-Centric Approach to Understanding the Essence of Organisation : Dietz, Jan L. G., Mulder, Hans B. F.: Amazon.nl: Boeken
Enterprise Ontology
·amazon.nl·
Enterprise Ontology: A Human-Centric Approach to Understanding the Essence of Organisation : Dietz, Jan L. G., Mulder, Hans B. F.: Amazon.nl: Boeken
The Era of Semantic Decoding
The Era of Semantic Decoding
Recent work demonstrated great promise in the idea of orchestrating collaborations between LLMs, human input, and various tools to address the inherent limitations of LLMs. We propose a novel perspective called semantic decoding, which frames these collaborative processes as optimization procedures in semantic space. Specifically, we conceptualize LLMs as semantic processors that manipulate meaningful pieces of information that we call semantic tokens (known thoughts). LLMs are among a large pool of other semantic processors, including humans and tools, such as search engines or code executors. Collectively, semantic processors engage in dynamic exchanges of semantic tokens to progressively construct high-utility outputs. We refer to these orchestrated interactions among semantic processors, optimizing and searching in semantic space, as semantic decoding algorithms. This concept draws a direct parallel to the well-studied problem of syntactic decoding, which involves crafting algorithms to best exploit auto-regressive language models for extracting high-utility sequences of syntactic tokens. By focusing on the semantic level and disregarding syntactic details, we gain a fresh perspective on the engineering of AI systems, enabling us to imagine systems with much greater complexity and capabilities. In this position paper, we formalize the transition from syntactic to semantic tokens as well as the analogy between syntactic and semantic decoding. Subsequently, we explore the possibilities of optimizing within the space of semantic tokens via semantic decoding algorithms. We conclude with a list of research opportunities and questions arising from this fresh perspective. The semantic decoding perspective offers a powerful abstraction for search and optimization directly in the space of meaningful concepts, with semantic tokens as the fundamental units of a new type of computation.
·arxiv.org·
The Era of Semantic Decoding
A Survey on Semantic Modeling for Building Energy Management
A Survey on Semantic Modeling for Building Energy Management
Buildings account for a substantial portion of global energy consumption. Reducing buildings' energy usage primarily involves obtaining data from building systems and environment, which are instrumental in assessing and optimizing the building's performance. However, as devices from various manufacturers represent their data in unique ways, this disparity introduces challenges for semantic interoperability and creates obstacles in developing scalable building applications. This survey explores the leading semantic modeling techniques deployed for energy management in buildings. Furthermore, it aims to offer tangible use cases for applying semantic models, shedding light on the pivotal concepts and limitations intrinsic to each model. Our findings will assist researchers in discerning the appropriate circumstances and methodologies for employing these models in various use cases.
·arxiv.org·
A Survey on Semantic Modeling for Building Energy Management