Want to Fix LLM Hallucination? Neurosymbolic Alone Won’t Cut It
Want to Fix LLM Hallucination? Neurosymbolic Alone Won’t Cut It
The Conversation’s new piece makes a clear case for neurosymbolic AI—integrating symbolic logic with statistical learning—as the long-term fix for LLM hallucinations. It’s a timely and necessary argument:
“No matter how large a language model gets, it can’t escape its fundamental lack of grounding in rules, logic, or real-world structure. Hallucination isn’t a bug, it’s the default.”
But what’s crucial—and often glossed over—is that symbolic logic alone isn’t enough. The real leap comes from adding formal ontologies and semantic constraints that make meaning machine-computable. OWL, Shapes Constraint Language (SHACL), and frameworks like BFO, Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE), the Suggested Upper Merged Ontology (SUMO), and the Common Core Ontologies (CCO) don’t just “represent rules”—they define what exists, what can relate, and under what conditions inference is valid. That’s the difference between “decorating” a knowledge graph and engineering one that can detect, explain, and prevent hallucinations in practice.
I’d go further:
• Most enterprise LLM hallucinations are just semantic errors—mislabeling, misattribution, or class confusion that only formal ontologies can prevent.
• Neurosymbolic systems only deliver if their symbolic half is grounded in ontological reality, not just handcrafted rules or taxonomies.
The upshot:
We need to move beyond mere integration of symbols and neurons. We need semantic scaffolding—ontologies as infrastructure—to ensure AI isn’t just fluent, but actually right.
Curious if others are layering formal ontologies (BFO, DOLCE, SUMO) into their AI stacks yet? Or are we still hoping that more compute and prompt engineering will do the trick?
#NeuroSymbolicAI #SemanticAI #Ontology #LLMs #AIHallucination #KnowledgeGraphs #AITrust #AIReasoning
Want to Fix LLM Hallucination? Neurosymbolic Alone Won’t Cut It