Found 23 bookmarks
Custom sorting
Introducing FACT: Fast Augmented Context Tools (3.2x faster, 90% cost reduction vs RAG)
Introducing FACT: Fast Augmented Context Tools (3.2x faster, 90% cost reduction vs RAG)
Introducing FACT: Fast Augmented Context Tools (3.2x faster, 90% cost reduction vs RAG) RAG had its run, but it’s not built for agentic systems. Vectors are fuzzy, slow, and blind to context. They work fine for static data, but once you enter recursive, real-time workflows, where agents need to reason, act, and reflect. RAG collapses under its own ambiguity. That’s why I built FACT: Fast Augmented Context Tools. Traditional Approach: User Query → Database → Processing → Response (2-5 seconds) FACT Approach: User Query → Intelligent Cache → [If Miss] → Optimized Processing → Response (50ms) It replaces vector search in RAG pipelines with a combination of intelligent prompt caching and deterministic tool execution via MCP. Instead of guessing which chunk is relevant, FACT explicitly retrieves structured data, SQL queries, live APIs, internal tools, then intelligently caches the result if it’s useful downstream. The prompt caching isn’t just basic storage. It’s intelligent using the prompt cache from Anthropic and other LLM providers, tuned for feedback-driven loops: static elements get reused, transient ones expire, and the system adapts in real time. Some things you always want cached, schemas, domain prompts. Others, like live data, need freshness. Traditional RAG is particularly bad at this. Ask anyone force to frequently update vector DBs. I'm also using Arcade.dev to handle secure, scalable execution across both local and cloud environments, giving FACT hybrid intelligence for complex pipelines and automatic tool selection. If you're building serious agents, skip the embeddings. RAG is a workaround. FACT is a foundation. It’s cheaper, faster, and designed for how agents actually work: with tools, memory, and intent. To get started point your favorite coding agent at: https://lnkd.in/gek_akem | 38 comments on LinkedIn
Introducing FACT: Fast Augmented Context Tools (3.2x faster, 90% cost reduction vs RAG)
·linkedin.com·
Introducing FACT: Fast Augmented Context Tools (3.2x faster, 90% cost reduction vs RAG)
A-MEM Transforms AI Agent Memory with Zettelkasten Method, Atomic Notes, Dynamic Linking & Continuous Evolution
A-MEM Transforms AI Agent Memory with Zettelkasten Method, Atomic Notes, Dynamic Linking & Continuous Evolution
🏯🏇 A-MEM Transforms AI Agent Memory with Zettelkasten Method, Atomic Notes, Dynamic Linking & Continuous Evolution! This Novel Memory fixes rigid structures with adaptable, evolving, and interconnected knowledge networks, delivering 2x performance in complex reasoning tasks. 𝗧𝗵𝗶𝘀 𝗶𝘀 𝘄𝗵𝗮𝘁 𝗜 𝗹𝗲𝗮𝗿𝗻𝗲𝗱: ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》 𝗪𝗵𝘆 𝗧𝗿𝗮𝗱𝗶𝘁𝗶𝗼𝗻𝗮𝗹 𝗠𝗲𝗺𝗼𝗿𝘆 𝗙𝗮𝗹𝗹 𝗦𝗵𝗼𝗿𝘁 Most AI agents today rely on simplistic storage and retrieval but break down when faced with complex, multi-step reasoning tasks. ✸ Common Limitations: ☆ Fixed schemas: Conventional memory systems require predefined structures that limit flexibility. ☆ Limited adaptability: When new information arises, old memories remain static and disconnected, reducing an agent’s ability to build on past experiences. ☆ Ineffective long-term retention: AI agents often struggle to recall relevant past interactions, leading to redundant processing and inefficiencies. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》𝗔-𝗠𝗘𝗠: 𝗔𝘁𝗼𝗺𝗶𝗰 𝗻𝗼𝘁𝗲𝘀 𝗮𝗻𝗱 𝗗𝘆𝗻𝗮𝗺𝗶𝗰 𝗹𝗶𝗻𝗸𝗶𝗻𝗴 A-MEM organizes knowledge in a way that mirrors how humans create and refine ideas over time. ✸ How it Works: ☆ Atomic notes: Information is broken down into small, self-contained knowledge units, ensuring clarity and easy integration with future knowledge. ☆ Dynamic linking: Instead of relying on static categories, A-MEM automatically creates connections between related knowledge, forming a network of interrelated ideas. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》 𝗣𝗿𝗼𝘃𝗲𝗻 𝗣𝗲𝗿𝗳𝗼𝗿𝗺𝗮𝗻𝗰𝗲 𝗔𝗱𝘃𝗮𝗻𝘁𝗮𝗴𝗲 A-MEM delivers measurable improvements. ✸ Empirical results demonstrate: ☆ Over 2x performance improvement in complex reasoning tasks, where AI must synthesize multiple pieces of information across different timeframes. ☆ Superior efficiency across top foundation models, including GPT, Llama, and Qwen—proving its versatility and broad applicability. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 》 𝗜𝗻𝘀𝗶𝗱𝗲 𝗔-𝗠𝗘𝗠 ✸ Note Construction: ☆ AI-generated structured notes that capture essential details and contextual insights. ☆ Each memory is assigned metadata, including keywords and summaries, for faster retrieval. ✸ Link Generation: ☆ The system autonomously connects new memories to relevant past knowledge. ☆ Relationships between concepts emerge naturally, allowing AI to recognize patterns over time. ✸ Memory Evolution: ☆ Older memories are continuously updated as new insights emerge. ☆ The system dynamically refines knowledge structures, mimicking the way human memory strengthens connections over time. ≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣ ⫸ꆛ Want to build Real-World AI agents? Join My 𝗛𝗮𝗻𝗱𝘀-𝗼𝗻 𝗔𝗜 𝗔𝗴𝗲𝗻𝘁 𝟰-𝗶𝗻-𝟭 𝗧𝗿𝗮𝗶𝗻𝗶𝗻𝗴 TODAY! 𝟰𝟴𝟬+ already Enrolled. ➠ Build Real-World AI Agents for Healthcare, Finance,Smart Cities,Sales ➠ Learn 4 Framework: LangGraph | PydanticAI | CrewAI | OpenAI Swarm ➠ Work with Text, Audio, Video and Tabular Data 👉𝗘𝗻𝗿𝗼𝗹𝗹 𝗡𝗢𝗪 (𝟰𝟱% 𝗱𝗶𝘀𝗰𝗼𝘂𝗻𝘁): https://lnkd.in/eGuWr4CH | 27 comments on LinkedIn
A-MEM Transforms AI Agent Memory with Zettelkasten Method, Atomic Notes, Dynamic Linking & Continuous Evolution
·linkedin.com·
A-MEM Transforms AI Agent Memory with Zettelkasten Method, Atomic Notes, Dynamic Linking & Continuous Evolution
RAG vs Graph RAG, explained visually
RAG vs Graph RAG, explained visually
RAG vs Graph RAG, explained visually. (it's a popular LLM interview question) Imagine you have a long document, say a biography, about an individual (X) who has accomplished several things in this life. ↳ Chapter 1: Talks about Accomplishment-1. ↳ Chapter 2: Talks about Accomplishment-2. ... ↳ Chapter 10: Talks about Accomplishment-10. Summarizing all these accomplishments via RAG might never be possible since... ...it must require the entire context... ...but one might only be fetching the top-k relevant chunks from the vector db. Moreover, since traditional RAG systems retrieve each chunk independently, this can often leave the LLM to infer the connections between them (provided the chunks are retrieved). Graph RAG solves this. The idea is to first create a graph (entities & relationships) from the documents and then do traversal over that graph during the retrieval phase. See how Graph RAG solves the above problems. - First, a system (typically an LLM) will create the graph by understanding the biography. - This will produce a full graph of nodes entities & relationships, and a subgraph will look like this: ↳ X → → Accomplishment-1. ↳ X → → Accomplishment-2. ... ↳ X → → Accomplishment-N. When summarizing these accomplishments, the retrieval phase can do a graph traversal to fetch all the relevant context related to X's accomplishments. This context, when passed to the LLM, will produce a more coherent and complete answer as opposed to traditional RAG. Another reason why Graph RAG systems are so effective is because LLMs are inherently adept at reasoning with structured data. Graph RAG instills that structure into them with their retrieval mechanism. 👉 Over to you: What are some other issues with traditional RAG systems that Graph RAG solves? ____ Find me → Avi Chawla Every day, I share tutorials and insights on DS, ML, LLMs, and RAGs. | 24 comments on LinkedIn
RAG vs Graph RAG, explained visually
·linkedin.com·
RAG vs Graph RAG, explained visually
Graph RAG open source stack to generate and visualize knowledge graphs
Graph RAG open source stack to generate and visualize knowledge graphs
A serious knowledge graph effort is much more than a bit of Github, but customers and adventurous minds keep asking me if there is an easy to use (read: POC click-and-go solution) graph RAG open source stack they can use to generate knowledge graphs. So, here is my list of projects I keep an eye on. Mind, there is nothing simple if you venture into graphs, despite all the claims and marketing. Things like graph machine learning, graph layout and distributed graph analytics is more than a bit of pip install. The best solutions are hidden inside multi-nationals, custom made. Equity firms and investors sometimes ask me to evaluate innovations. It's amazing what talented people develop and never shows up in the news, or on Github. TrustGraph - The Knowledge Platform for AI https://trustgraph.ai/ The only one with a distributed architecture and made for enterprise KG. itext2kg - https://lnkd.in/e-eQbwV5 Clean and plain. Wrapped prompts done right. Fast GraphRAG - https://lnkd.in/e7jZ9GZH Popular and with some basic visualization. ZEP - https://lnkd.in/epxtKtCU Geared towards agentic memory. Triplex - https://lnkd.in/eGV8FR56 LLM to extract triples. GraphRAG Local with UI - https://lnkd.in/ePGeqqQE Another starting point for small KG efforts. Or to convince your investors. GraphRAG visualizer - https://lnkd.in/ePuMmfkR Makes pretty pictures but not for drill-downs. Neo4j's GraphRAG - https://lnkd.in/ex_A52RU A python package with a focus on getting data into Neo4j. OpenSPG - https://lnkd.in/er4qUFJv Has a different take and more academic. Microsoft GraphRAG - https://lnkd.in/e_a-mPum A classic but I don't think anyone is using this beyond experimentation. yWorks - https://www.yworks.com If you are serious about interactive graph layout. Ogma - https://lnkd.in/evwnJCBK If you are serious about graph data viz. Orbifold Consulting - https://lnkd.in/e-Dqg4Zx If you are serious about your KG journey. #GraphRAG #GraphViz #GraphMachineLearning #KnowledgeGraphs
graph RAG open source stack they can use to generate knowledge graphs.
·linkedin.com·
Graph RAG open source stack to generate and visualize knowledge graphs
LLMs generate possibilities; knowledge graphs remember what works
LLMs generate possibilities; knowledge graphs remember what works
LLMs generate possibilities; knowledge graphs remember what works. Together, they forge the recursive memory and creative engine that enables AI systems to truly evolve themselves. Combining neural components (like large language models) with symbolic verification creates a powerful framework for self-evolution that overcomes limitations of either approach used independently. AlphaEvolve demonstrates that self-evolving systems face a fundamental tension between generating novel solutions and ensuring those solutions actually work. The paper shows how AlphaEvolve addresses this through a hybrid architecture where: Neural components (LLMs) provide creative generation of code modifications by drawing on patterns learned from vast training data Symbolic components (code execution) provide ground truth verification through deterministic evaluation Without this combination, a system would either generate interesting but incorrect solutions (neural-only approach) or be limited to small, safe modifications within known patterns (symbolic-only approach). The system can operate at multiple levels of abstraction depending on the problem: raw solution evolution, constructor function evolution, search algorithm evolution, or co-evolution of intermediate solutions and search algorithms. This capability emanates directly from the neurosymbolic integration, where: Neural networks excel at working with continuous, high-dimensional spaces and recognizing patterns across abstraction levels Symbolic systems provide precise representations of discrete structures and logical relationships This enables AlphaEvolve to modify everything from specific lines of code to entire algorithmic approaches. While AlphaEvolve currently uses an evolutionary database, a knowledge graph structure could significantly enhance self-evolution by: Capturing evolutionary relationships between solutions Identifying patterns of code changes that consistently lead to improvements Representing semantic connections between different solution approaches Supporting transfer learning across problem domains Automated, objective evaluation is the core foundation enabling self-evolution: The main limitation of AlphaEvolve is that it handles problems for which it is possible to devise an automated evaluator. This evaluation component provides the "ground truth" feedback that guides evolution, allowing the system to: Differentiate between successful and unsuccessful modifications Create selection pressure toward better-performing solutions Avoid hallucinations or non-functional solutions that might emerge from neural components alone. When applied to optimize Gemini's training kernels, the system essentially improved the very LLM technology that powers it. | 12 comments on LinkedIn
LLMs generate possibilities; knowledge graphs remember what works
·linkedin.com·
LLMs generate possibilities; knowledge graphs remember what works
NodeRAG restructures knowledge into a heterograph: a rich, layered, musical graph where each node plays a different role
NodeRAG restructures knowledge into a heterograph: a rich, layered, musical graph where each node plays a different role
NodeRAG restructures knowledge into a heterograph: a rich, layered, musical graph where each node plays a different role. It’s not just smarter retrieval. It’s structured memory for AI agents. 》 Why NodeRAG? Most Retrieval-Augmented Generation (RAG) methods retrieve chunks of text. Good enough — until you need reasoning, precision, and multi-hop understanding. This is how NodeRAG solves these problems: 》 🔹Step 1: Graph Decomposition NodeRAG begins by decomposing raw text into smart building blocks: ✸ Semantic Units (S): Little event nuggets ("Hinton won the Nobel Prize.") ✸ Entities (N): Key names or concepts ("Hinton", "Nobel Prize") ✸ Relationships (R): Links between entities ("awarded to") ✩ This is like teaching your AI to recognize the actors, actions, and scenes inside any document. 》 🔹Step 2: Graph Augmentation Decomposition alone isn't enough. NodeRAG augments the graph by identifying important hubs: ✸ Node Importance: Using K-Core and Betweenness Centrality to find critical nodes ✩ Important entities get special attention — their attributes are summarized into new nodes (A). ✸ Community Detection: Grouping related nodes into communities and summarizing them into high-level insights (H). ✩ Each community gets a "headline" overview node (O) for quick retrieval. It's like adding context and intuition to raw facts. 》 🔹 Step 3: Graph Enrichment Knowledge without detail is brittle. So NodeRAG enriches the graph: ✸ Original Text: Full chunks are linked back into the graph (Text nodes, T) ✸ Semantic Edges: Using HNSW for fast, meaningful similarity connections ✩ Only smart nodes are embedded (not everything!) — saving huge storage space. ✩ Dual search (exact + vector) makes retrieval laser-sharp. It’s like turning a 2D map into a 3D living world. 》 🔹 Step 4: Graph Searching Now comes the magic. ✸ Dual Search: First find strong entry points (by name or by meaning) ✸ Shallow Personalized PageRank (PPR): Expand carefully from entry points to nearby relevant nodes. ✩ No wandering into irrelevant parts of the graph. The search is surgical. ✩ Retrieval includes fine-grained semantic units, attributes, high-level elements — everything you need, nothing you don't. It’s like sending out agents into a city — and they return not with everything they saw, but exactly what you asked for, summarized and structured. 》 Results: NodeRAG's Performance Compared to GraphRAG, LightRAG, NaiveRAG, and HyDE — NodeRAG wins across every major domain: Tech, Science, Writing, Recreation, and Finance. NodeRAG isn’t just a better graph. NodeRAG is a new operating system for memory. ≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣ ⫸ꆛ Want to build Real-World AI agents? Join My 𝗛𝗮𝗻𝗱𝘀-𝗼𝗻 𝗔𝗜 𝗔𝗴𝗲𝗻𝘁 𝗧𝗿𝗮𝗶𝗻𝗶𝗻𝗴 TODAY! ➠ Build Real-World AI Agents + RAG Pipelines ➠ Learn 3 Tools: LangGraph/LangChain | CrewAI | OpenAI Swarm ➠ Work with Text, Audio, Video and Tabular Data 👉𝗘𝗻𝗿𝗼𝗹𝗹 𝗡𝗢𝗪 (𝟯𝟰% 𝗱𝗶𝘀𝗰𝗼𝘂𝗻𝘁): https://lnkd.in/eGuWr4CH | 20 comments on LinkedIn
NodeRAG restructures knowledge into a heterograph: a rich, layered, musical graph where each node plays a different role
·linkedin.com·
NodeRAG restructures knowledge into a heterograph: a rich, layered, musical graph where each node plays a different role
Announcing general availability of Amazon Bedrock Knowledge Bases GraphRAG with Amazon Neptune Analytics | Amazon Web Services
Announcing general availability of Amazon Bedrock Knowledge Bases GraphRAG with Amazon Neptune Analytics | Amazon Web Services
Today, Amazon Web Services (AWS) announced the general availability of Amazon Bedrock Knowledge Bases GraphRAG (GraphRAG), a capability in Amazon Bedrock Knowledge Bases that enhances Retrieval-Augmented Generation (RAG) with graph data in Amazon Neptune Analytics. In this post, we discuss the benefits of GraphRAG and how to get started with it in Amazon Bedrock Knowledge Bases.
·aws.amazon.com·
Announcing general availability of Amazon Bedrock Knowledge Bases GraphRAG with Amazon Neptune Analytics | Amazon Web Services
𝗧𝗵𝗲 𝗙𝘂𝘁𝘂𝗿𝗲 𝗜𝘀 𝗖𝗹𝗲𝗮𝗿: 𝗔𝗴𝗲𝗻𝘁𝘀 𝗪𝗶𝗹𝗹 𝗡𝗘𝗘𝗗 𝗚𝗿𝗮𝗽𝗵 𝗥𝗔𝗚
𝗧𝗵𝗲 𝗙𝘂𝘁𝘂𝗿𝗲 𝗜𝘀 𝗖𝗹𝗲𝗮𝗿: 𝗔𝗴𝗲𝗻𝘁𝘀 𝗪𝗶𝗹𝗹 𝗡𝗘𝗘𝗗 𝗚𝗿𝗮𝗽𝗵 𝗥𝗔𝗚
🤺 𝗧𝗵𝗲 𝗙𝘂𝘁𝘂𝗿𝗲 𝗜𝘀 𝗖𝗹𝗲𝗮𝗿: 𝗔𝗴𝗲𝗻𝘁𝘀 𝗪𝗶𝗹𝗹 𝗡𝗘𝗘𝗗 𝗚𝗿𝗮𝗽𝗵 𝗥𝗔𝗚 Why? It combines Multi-hop reasoning, Non-Parameterized / Learning-Based Retrieval, Topology-Aware Prompting. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 🤺 𝗪𝗵𝗮𝘁 𝗜𝘀 𝗚𝗿𝗮𝗽𝗵-𝗘𝗻𝗵𝗮𝗻𝗰𝗲𝗱 𝗥𝗲𝘁𝗿𝗶𝗲𝘃𝗮𝗹-𝗔𝘂𝗴𝗺𝗲𝗻𝘁𝗲𝗱 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝗼𝗻 (𝗥𝗔𝗚)? ✩ LLMs hallucinate. ✩ LLMs forget. ✩ LLMs struggle with complex reasoning. Graphs connect facts. They organize knowledge into neat, structured webs. So when RAG retrieves from a graph, the LLM doesn't just guess — it reasons. It follows the map. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 🤺 𝗧𝗵𝗲 𝟰-𝗦𝘁𝗲𝗽 𝗪𝗼𝗿𝗸𝗳𝗹𝗼𝘄 𝗼𝗳 𝗚𝗿𝗮𝗽𝗵 𝗥𝗔𝗚 1️⃣ — User Query: The user asks a question. ("Tell me how Einstein used Riemannian geometry?") 2️⃣ — Retrieval Module: The system fetches the most structurally relevant knowledge from a graph. (Entities: Einstein, Grossmann, Riemannian Geometry.) 3️⃣ — Prompting Module: Retrieved knowledge is reshaped into a golden prompt — sometimes as structured triples, sometimes as smart text. 4️⃣ — Output Response: LLM generates a fact-rich, logically sound answer. ﹌﹌﹌﹌﹌﹌﹌﹌﹌ 🤺 𝗦𝘁𝗲𝗽 𝟭: 𝗕𝘂𝗶𝗹𝗱 𝗚𝗿𝗮𝗽𝗵-𝗣𝗼𝘄𝗲𝗿𝗲𝗱 𝗗𝗮𝘁𝗮𝗯𝗮𝘀𝗲𝘀 ✩ Use Existing Knowledge Graphs like Freebase or Wikidata — structured, reliable, but static. ✩ Or Build New Graphs From Text (OpenIE, instruction-tuned LLMs) — dynamic, adaptable, messy but powerful. 🤺 𝗦𝘁𝗲𝗽 𝟮: 𝗥𝗲𝘁𝗿𝗶𝗲𝘃𝗮𝗹 𝗮𝗻𝗱 𝗣𝗿𝗼𝗺𝗽𝘁𝗶𝗻𝗴 𝗔𝗹𝗴𝗼𝗿𝗶𝘁𝗵𝗺𝘀 ✩ Non-Parameterized Retrieval (Deterministic, Probabilistic, Heuristic) ★ Think Dijkstra's algorithm, PageRank, 1-hop neighbors. Fast but rigid. ✩ Learning-Based Retrieval (GNNs, Attention Models) ★ Think "graph convolution" or "graph attention." Smarter, deeper, but heavier. ✩ Prompting Approaches: ★ Topology-Aware: Preserve graph structure — multi-hop reasoning. ★ Text Prompting: Flatten into readable sentences — easier for vanilla LLMs. 🤺 𝗦𝘁𝗲𝗽 𝟯: 𝗚𝗿𝗮𝗽𝗵-𝗦𝘁𝗿𝘂𝗰𝘁𝘂𝗿𝗲𝗱 𝗣𝗶𝗽𝗲𝗹𝗶𝗻𝗲𝘀 ✩ Sequential Pipelines: Straightforward query ➔ retrieve ➔ prompt ➔ answer. ✩ Loop Pipelines: Iterative refinement until the best evidence is found. ✩ Tree Pipelines: Parallel exploration ➔ multiple knowledge paths at once. 🤺 𝗦𝘁𝗲𝗽 𝟰: 𝗚𝗿𝗮𝗽𝗵-𝗢𝗿𝗶𝗲𝗻𝘁𝗲𝗱 𝗧𝗮𝘀𝗸𝘀 ✩ Knowledge Graph QA (KGQA): Answering deep, logical questions with graphs. ✩ Graph Tasks: Node classification, link prediction, graph summarization. ✩ Domain-Specific Applications: Biomedicine, law, scientific discovery, finance. ≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣≣ Join my 𝗛𝗮𝗻𝗱𝘀-𝗼𝗻 𝗔𝗜 𝗔𝗴𝗲𝗻𝘁 𝗧𝗿𝗮𝗶𝗻𝗶𝗻𝗴. Skip the fluff and build real AI agents — fast. 𝗪𝗵𝗮𝘁 𝘆𝗼𝘂 𝗴𝗲𝘁: ✅ Create Smart Agents + Powerful RAG Pipelines ✅ Master 𝗟𝗮𝗻𝗴𝗖𝗵𝗮𝗶𝗻, 𝗖𝗿𝗲𝘄𝗔𝗜 & 𝗦𝘄𝗮𝗿𝗺 – all in one training ✅ Projects with Text, Audio, Video & Tabular Data 𝟰𝟲𝟬+ engineers already enrolled 𝗘𝗻𝗿𝗼𝗹𝗹 𝗻𝗼𝘄 — 𝟯𝟰% 𝗼𝗳𝗳, 𝗲𝗻𝗱𝘀 𝘀𝗼𝗼𝗻: https://lnkd.in/eGuWr4CH | 35 comments on LinkedIn
𝗧𝗵𝗲 𝗙𝘂𝘁𝘂𝗿𝗲 𝗜𝘀 𝗖𝗹𝗲𝗮𝗿: 𝗔𝗴𝗲𝗻𝘁𝘀 𝗪𝗶𝗹𝗹 𝗡𝗘𝗘𝗗 𝗚𝗿𝗮𝗽𝗵 𝗥𝗔𝗚
·linkedin.com·
𝗧𝗵𝗲 𝗙𝘂𝘁𝘂𝗿𝗲 𝗜𝘀 𝗖𝗹𝗲𝗮𝗿: 𝗔𝗴𝗲𝗻𝘁𝘀 𝗪𝗶𝗹𝗹 𝗡𝗘𝗘𝗗 𝗚𝗿𝗮𝗽𝗵 𝗥𝗔𝗚
Lessons Learned from Evaluating NodeRAG vs Other RAG Systems
Lessons Learned from Evaluating NodeRAG vs Other RAG Systems
🔎 Lessons Learned from Evaluating NodeRAG vs Other RAG Systems I recently dug into the NodeRAG paper (https://lnkd.in/gwaJHP94) and it was eye-opening not just for how it performed, but for what it revealed about the evolution of RAG (Retrieval-Augmented Generation) systems. Some key takeaways for me: 👉 NaiveRAG is stronger than you think. Brute-force retrieval using simple vector search sometimes beats graph-based methods, especially when graph structures are too coarse or noisy. 👉 GraphRAG was an important step, but not the final answer. While it introduced knowledge graphs and community-based retrieval, GraphRAG sometimes underperformed NaiveRAG because its communities could be too coarse, leading to irrelevant retrieval. 👉 LightRAG reduced token cost, but at the expense of accuracy. By focusing on retrieving just 1-hop neighbors instead of traversing globally, LightRAG made retrieval cheaper — but often missed important multi-hop reasoning paths, losing precision. 👉 NodeRAG shows what mature RAG looks like. NodeRAG redesigned the graph structure itself: Instead of homogeneous graphs, it uses heterogeneous graphs with fine-grained semantic units, entities, relationships, and high-level summaries — all as nodes. It combines dual search (exact match + semantic search) and shallow Personalized PageRank to precisely retrieve the most relevant context. The result? 🚀 Highest accuracy across multi-hop and open-ended benchmarks 🚀 Lowest token retrieval (i.e., lower inference costs) 🚀 Faster indexing and querying 🧠 Key takeaway: In the RAG world, it’s no longer about retrieving more — it’s about retrieving better. Fine-grained, explainable, efficient retrieval will define the next generation of RAG systems. If you’re working on RAG architectures, NodeRAG’s design principles are well worth studying! Would love to hear how others are thinking about the future of RAG systems. 🚀📚 #RAG #KnowledgeGraphs #AI #LLM #NodeRAG #GraphRAG #LightRAG #MachineLearning #GenAI #KnowledegGraphs
·linkedin.com·
Lessons Learned from Evaluating NodeRAG vs Other RAG Systems
Google Cloud & Neo4j: Teaming Up at the Intersection of Knowledge Graphs, Agents, MCP, and Natural Language Interfaces - Graph Database & Analytics
Google Cloud & Neo4j: Teaming Up at the Intersection of Knowledge Graphs, Agents, MCP, and Natural Language Interfaces - Graph Database & Analytics
We’re thrilled to announce new Text2Cypher models and Google’s MCP Toolbox for Databases from the collaboration between Google Cloud and Neo4j.
·neo4j.com·
Google Cloud & Neo4j: Teaming Up at the Intersection of Knowledge Graphs, Agents, MCP, and Natural Language Interfaces - Graph Database & Analytics
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning ... 👉 Why This Matters Most AI systems blend knowledge graphs (structured data) with large language models (flexible reasoning). But there’s a hidden variable: "how" you translate the graph into text for the AI. Researchers discovered that the formatting choice alone can swing performance by up to "17.5%" on reasoning tasks. Imagine solving 1 in 5 more problems correctly just by adjusting how you present data. 👉 What They Built KG-LLM-Bench is a new benchmark to test how language models reason with knowledge graphs. It includes five tasks: - Triple verification (“Does this fact exist?”) - Shortest path finding (“How are two concepts connected?”) - Aggregation (“How many entities meet X condition?”) - Multi-hop reasoning (“Which entities linked to A also have property B?”) - Global analysis (“Which node is most central?”) The team tested seven models (Claude, GPT-4o, Gemini, Llama, Nova) with five ways to “textualize” graphs, from simple edge lists to structured JSON and semantic web formats like RDF Turtle. 👉 Key Insights 1. Format matters more than assumed:   - Structured JSON and edge lists performed best overall, but results varied by task.   - For example, JSON excels at aggregation tasks (data is grouped by entity), while edge lists help identify central nodes (repeated mentions highlight connections). 2. Models don’t cheat: Replacing real entity names with fake ones (e.g., “France” → “Verdania”) caused only a 0.2% performance drop, proving models rely on context, not memorized knowledge. 3. Token efficiency:   - Edge lists used ~2,600 tokens vs. JSON-LD’s ~13,500. Shorter formats free up context space for complex reasoning.   - But concise ≠ always better: structured formats improved accuracy for tasks requiring grouped data. 4. Models struggle with directionality:   Counting outgoing edges (e.g., “Which countries does France border?”) is easier than incoming ones (“Which countries border France?”), likely due to formatting biases. 👉 Practical Takeaways - Optimize for your task: Use JSON for aggregation, edge lists for centrality. - Test your model: The best format depends on the LLM—Claude thrived with RDF Turtle, while Gemini preferred edge lists. - Don’t fear pseudonyms: Masking real names minimally impacts performance, useful for sensitive data. The benchmark is openly available, inviting researchers to add new tasks, graphs, and models. As AI handles larger knowledge bases, choosing the right “data language” becomes as critical as the reasoning logic itself. Paper: [KG-LLM-Bench: A Scalable Benchmark for Evaluating LLM Reasoning on Textualized Knowledge Graphs] Authors: Elan Markowitz, Krupa Galiya, Greg Ver Steeg, Aram Galstyan
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
·linkedin.com·
Choosing the Right Format: How Knowledge Graph Layouts Impact AI Reasoning
Knowledge graphs for LLM grounding and avoiding hallucination
Knowledge graphs for LLM grounding and avoiding hallucination
This blog post is part of a series that dives into various aspects of SAP’s approach to Generative AI, and its technical underpinnings. In previous blog posts of this series, you learned about how to use large language models (LLMs) for developing AI applications in a trustworthy and reliable manner...
·community.sap.com·
Knowledge graphs for LLM grounding and avoiding hallucination
Build your hybrid-Graph for RAG & GraphRAG applications using the power of NLP | LinkedIn
Build your hybrid-Graph for RAG & GraphRAG applications using the power of NLP | LinkedIn
Build a graph for RAG application for a price of a chocolate bar! What is GraphRAG for you? What is GraphRAG? What does GraphRAG mean from your perspective? What if you could have a standard RAG and a GraphRAG as a combi-package, with just a query switch? The fact is, there is no concrete, universal
·linkedin.com·
Build your hybrid-Graph for RAG & GraphRAG applications using the power of NLP | LinkedIn