Found 112 bookmarks
Custom sorting
Medical Graph RAG
Medical Graph RAG
LLMs and Knowledge Graphs: A love story ๐Ÿ’“ Researchers from University of Oxford recently released MedGraphRAG. At its core, MedGraphRAG is a frameworkโ€ฆ
ยทlinkedin.comยท
Medical Graph RAG
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
๐—ฅ๐—”๐—š ๐—œ๐—บ๐—ฝ๐—น๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—™๐—ฎ๐—ถ๐—น ๐——๐˜‚๐—ฒ ๐—ง๐—ผ ๐—œ๐—ป๐˜€๐˜‚๐—ณ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜ ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ ๐—ข๐—ป ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป ๐—œ๐—ป๐˜๐—ฒ๐—ป๐˜ ๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Žโ€ฆ | 12 comments on LinkedIn
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
ยทlinkedin.comยท
๐˜›๐˜ฉ๐˜ฆ ๐˜”๐˜ช๐˜ฏ๐˜ฅ๐˜ง๐˜ถ๐˜ญ-๐˜™๐˜ˆ๐˜Ž ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ข ๐˜ง๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ฐ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต-๐˜ฃ๐˜ข๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ข๐˜ญ๐˜ช๐˜จ๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ณ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ฆ๐˜ท๐˜ข๐˜ญ.
An Overview of Knowledge Graph Embeddings
An Overview of Knowledge Graph Embeddings
An Overview of Knowledge Graph Embeddings (KGEs) โ€“ Part 1. ๐Ÿง ๐Ÿ„ Knowledge Graphs represent real-world facts as structured data. Nodes represent entities orโ€ฆ
An Overview of Knowledge Graph Embeddings
ยทlinkedin.comยท
An Overview of Knowledge Graph Embeddings
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
This is something very cool! 3. GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models "GraphReader addresses theโ€ฆ
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
ยทlinkedin.comยท
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected - SynaLinks/HybridAGI
ยทgithub.comยท
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Ask your (research) question against 76 Million scientific articles: https://ask.orkg.org Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientificโ€ฆ
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
ยทlinkedin.comยท
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Synergizing LLMs and KGs in the GenAI Landscape | LinkedIn
Synergizing LLMs and KGs in the GenAI Landscape | LinkedIn
Our paper "Are Large Language Models a Good Replacement of Taxonomies?" was just accepted to VLDB'2024! This finished our last stroke of study on how knowledgeable LLMs are and confirmed our recommendation for the next generation of KGs. How knowledgeable are LLMs? 1.
ยทlinkedin.comยท
Synergizing LLMs and KGs in the GenAI Landscape | LinkedIn
GraphReader: Long-Context Processing in AI
GraphReader: Long-Context Processing in AI
GraphReader:ย Long-Context Processing in AI ... As AI systems tackle increasingly complex tasks, the ability to effectively process and reason over longโ€ฆ
GraphReader:ย Long-Context Processing in AI
ยทlinkedin.comยท
GraphReader: Long-Context Processing in AI
Large Generative Graph Models
Large Generative Graph Models
Large Generative Models (LGMs) such as GPT, Stable Diffusion, Sora, and Suno are trained on a huge amount of language corpus, images, videos, and audio that are extremely diverse from numerous...
ยทarxiv.orgยท
Large Generative Graph Models
How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks
How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks
๐Ÿ’กย How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks? ๐Ÿ”Žโ€ฆ
ยทlinkedin.comยท
How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks
A repo for ICML graph papers
A repo for ICML graph papers
Following ICLR Graph Papers, I've created a repo for ICML graph papers, grouped by topic. We've got around 250 papers focusing on Graphs and GNNs in ICML'24.โ€ฆ
ยทlinkedin.comยท
A repo for ICML graph papers
Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
Introducing Docs2KG: A New Era in Knowledge Graph Construction from Unstructured Data ... Did you know that 80% of enterprise data resides in unstructuredโ€ฆ | 13 comments on LinkedIn
Docs2KG: A New Era in Knowledge Graph Construction from Unstructured Data
ยทlinkedin.comยท
Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
An approach for designing learning path recommendations using GPT-4 and Knowledge Graphs
An approach for designing learning path recommendations using GPT-4 and Knowledge Graphs
๐Ÿ’กย How important are learning paths for gaining the skills needed to tackle real-life problems? ๐Ÿ”ฌResearchers from the University of Siegen (Germany) and Keioโ€ฆ
an approach for designing learning path recommendations using GPT-4 and Knowledge Graphs
ยทlinkedin.comยท
An approach for designing learning path recommendations using GPT-4 and Knowledge Graphs
Personalizing Audiobooks and Podcasts with graph-based models - Spotify Research
Personalizing Audiobooks and Podcasts with graph-based models - Spotify Research
Spotify's catalog includes millions of music tracks and podcasts and has recently expanded to Audiobooks. Personalizing this content to users requires our algorithms to โ€œunderstandโ€ user preferences as well as content relationships across all content types...
Alice Wang
ยทresearch.atspotify.comยท
Personalizing Audiobooks and Podcasts with graph-based models - Spotify Research