Found 230 bookmarks
Custom sorting
LightRAG
LightRAG
🚀 Breaking Boundaries in Graph + Retrieval-Augmented Generation (RAG)! 🌐🤖 The rapid pace of innovation in combining graphs with RAG is absolutely…
LightRAG
·linkedin.com·
LightRAG
GraphAgent — An innovative AI agent that efficiently integrates structured and unstructured data
GraphAgent — An innovative AI agent that efficiently integrates structured and unstructured data
🚀 Excited to Share Our Recent Work! 🌟 GraphAgent — An innovative AI agent that efficiently integrates structured and unstructured data! 📚 👉 Paper link:…
GraphAgent — An innovative AI agent that efficiently integrates structured and unstructured data
·linkedin.com·
GraphAgent — An innovative AI agent that efficiently integrates structured and unstructured data
Introduction to Graph Neural Networks
Introduction to Graph Neural Networks
Want to catch up on Graph Neural Networks? Now's the time! Graph Neural Networks (GNNs) have become a popular solution for problems that include network data,…
Graph Neural Networks
·linkedin.com·
Introduction to Graph Neural Networks
Context-based Graph Neural Network
Context-based Graph Neural Network
❓How Can Graph Neural Networks Enhance Recommendation Systems by Incorporating Contextual Information? Traditional recommendation systems often leverage a…
Context-based Graph Neural Network
·linkedin.com·
Context-based Graph Neural Network
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph…
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
·linkedin.com·
SimGRAG is a novel method for knowledge graph driven RAG, transforms queries into graph patterns and aligns them with candidate subgraphs using a graph semantic distance metric
Graph resoning in Large Language Models
Graph resoning in Large Language Models
ICYMI, here are the slides from our standing room only talk at NeurIPS yesterday! Concepts we discuss include: ➡️ Quantifying how much Transformer you need to… | 18 comments on LinkedIn
·linkedin.com·
Graph resoning in Large Language Models
ISWC24 papers
ISWC24 papers
500 million+ members | Manage your professional identity. Build and engage with your professional network. Access knowledge, insights and opportunities.
·linkedin.com·
ISWC24 papers
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
🌟 TGB 2.0 @NeurIPS 2024 🌟 We are very happy to share that our paper TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs… | 11 comments on LinkedIn
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
·linkedin.com·
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
Knowledge Graph In-Context Learning
Knowledge Graph In-Context Learning
Unlocking universal reasoning across knowledge graphs. Knowledge graphs (KGs) are powerful tools for organizing and reasoning over vast amounts of… | 13 comments on LinkedIn
Knowledge Graph In-Context Learning
·linkedin.com·
Knowledge Graph In-Context Learning
Graph-constrained Reasoning
Graph-constrained Reasoning
🚀 Exciting New Research: "Graph-constrained Reasoning (GCR)" - Enabling Faithful KG-grounded LLM Reasoning with Zero Hallucination! 🧠 🎉 Proud to share our… | 11 comments on LinkedIn
Graph-constrained Reasoning
·linkedin.com·
Graph-constrained Reasoning
UltraQuery: going beyond simple one-hop link prediction to answering more complex queries on any graph in the zero-shot fashion better than trainable SOTA
UltraQuery: going beyond simple one-hop link prediction to answering more complex queries on any graph in the zero-shot fashion better than trainable SOTA
📣 Foundation models for graph reasoning become even stronger - in our new NeurIPS 2024 work we introduce UltraQuery: going beyond simple one-hop link…
UltraQuery: going beyond simple one-hop link prediction to answering more complex queries on any graph in the zero-shot fashion better than trainable SOTA
·linkedin.com·
UltraQuery: going beyond simple one-hop link prediction to answering more complex queries on any graph in the zero-shot fashion better than trainable SOTA
Mcore: Multi-Agent Collaborative Learning for Knowledge-Graph-Enhanced Recommendation | IEEE Conference Publication | IEEE Xplore
Mcore: Multi-Agent Collaborative Learning for Knowledge-Graph-Enhanced Recommendation | IEEE Conference Publication | IEEE Xplore
Recently, knowledge-graph-enhanced recommendation systems have attracted much attention, since knowledge graph (KG) can help improving the dataset quality and offering rich semantics for explainable recommendation. However, current KG-enhanced solutions focus on analyzing user behaviors on the product level and lack effective approaches to extract user preference towards product category, which is essential for better recommendation because users shopping online normally have strong preference towards distinctive product categories, not merely on products, according to various user studies. Moreover, the existing pure embedding-based recommendation methods can only utilize KGs with a limited size, which is not adaptable to many real-world applications. In this paper, we generalize the recommendation problem with preference mining as a compound knowledge reasoning task and propose a novel multi-agent system, called Mcore, which can promote model performance by mining users’ high-level interests and is adaptable to large KGs. Specifically, we split the overall problem and allocate sub-task to each agent: Coordinate Agent takes charge of recognizing the product-category preference of current user, while Relation Agent and Entity Agent perform KG reasoning cooperatively from a user node towards the preferred categories and terminate at a product node as recommendation. To train this heterogeneous multi-agent system, where agents own various functionalities, we propose an asynchronous reinforcement training pipeline, called Multi-agent Collaborative Learning. The extensive experiments on real datasets demonstrate the effectiveness and adaptability of Mcore on recommendation tasks.
·ieeexplore.ieee.org·
Mcore: Multi-Agent Collaborative Learning for Knowledge-Graph-Enhanced Recommendation | IEEE Conference Publication | IEEE Xplore