Found 356 bookmarks
Custom sorting
Vectors need Graphs!
Vectors need Graphs!
Vectors need Graphs! Embedding vectors are a pivotal tool when using Generative AI. While vectors might initially seem an unlikely partner to graphs, their… | 61 comments on LinkedIn
Vectors need Graphs!
·linkedin.com·
Vectors need Graphs!
Constructing knowledge graphs from text using OpenAI functions: Leveraging knowledge graphs to power LangChain Applications
Constructing knowledge graphs from text using OpenAI functions: Leveraging knowledge graphs to power LangChain Applications
Editor's Note: This post was written by Tomaz Bratanic from the Neo4j team. Extracting structured information from unstructured data like text has been around for some time and is nothing new. However, LLMs brought a significant shift to the field of information extraction. If before you needed a team of
·blog.langchain.dev·
Constructing knowledge graphs from text using OpenAI functions: Leveraging knowledge graphs to power LangChain Applications
Overcoming the "Reversal Curse" in LLMs with Ontologies
Overcoming the "Reversal Curse" in LLMs with Ontologies
Overcoming the "Reversal Curse" in LLMs with Ontologies: The "Reversal Curse" is a term coined in a recent paper to describe a particular failure of… | 108 comments on LinkedIn
Overcoming the "Reversal Curse" in LLMs with Ontologies
·linkedin.com·
Overcoming the "Reversal Curse" in LLMs with Ontologies
Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models
Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models
🚀 Exciting News: Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models! 📊🧠 We are thrilled to unveil our… | 42 comments on LinkedIn
Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models
·linkedin.com·
Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models
Chat with the Data Benchmark: Understanding Synergies between Large Language Models and Knowledge Graphs for Enterprise Conversations
Chat with the Data Benchmark: Understanding Synergies between Large Language Models and Knowledge Graphs for Enterprise Conversations
It was an honor to present the initial results of the Chat with the Data benchmark last week at the The Alan Turing Institute Knowledge Graph meetup (link to… | 11 comments on LinkedIn
·linkedin.com·
Chat with the Data Benchmark: Understanding Synergies between Large Language Models and Knowledge Graphs for Enterprise Conversations
LLMs-represent-Knowledge Graphs | LinkedIn
LLMs-represent-Knowledge Graphs | LinkedIn
On August 14, 2023, the paper Natural Language is All a Graph Needs by Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu and Yongfeng Zhang hit the arXiv streets and made quite a bang! The paper outlines a model called InstructGLM that adds further evidence that the future of graph representation lea
·linkedin.com·
LLMs-represent-Knowledge Graphs | LinkedIn
The Memory Game: Investigating the Accuracy of AI Models in Storing and Recalling Facts. Comparing LLMs and Knowledge Graph on Factual Knowledge
The Memory Game: Investigating the Accuracy of AI Models in Storing and Recalling Facts. Comparing LLMs and Knowledge Graph on Factual Knowledge
The Memory Game: Investigating the Accuracy of AI Models in Storing and Recalling Facts … 🧠 ... Comparing LLMs and Knowledge Graph on Factual Knowledge I’m… | 18 comments on LinkedIn
·linkedin.com·
The Memory Game: Investigating the Accuracy of AI Models in Storing and Recalling Facts. Comparing LLMs and Knowledge Graph on Factual Knowledge
LLMs4OL: Large Language Models for Ontology Learning
LLMs4OL: Large Language Models for Ontology Learning
We propose the LLMs4OL approach, which utilizes Large Language Models (LLMs) for Ontology Learning (OL). LLMs have shown significant advancements in natural language processing, demonstrating their ability to capture complex language patterns in different knowledge domains. Our LLMs4OL paradigm investigates the following hypothesis: \textit{Can LLMs effectively apply their language pattern capturing capability to OL, which involves automatically extracting and structuring knowledge from natural language text?} To test this hypothesis, we conduct a comprehensive evaluation using the zero-shot prompting method. We evaluate nine different LLM model families for three main OL tasks: term typing, taxonomy discovery, and extraction of non-taxonomic relations. Additionally, the evaluations encompass diverse genres of ontological knowledge, including lexicosemantic knowledge in WordNet, geographical knowledge in GeoNames, and medical knowledge in UMLS.
·arxiv.org·
LLMs4OL: Large Language Models for Ontology Learning
LLM Ontology-prompting for Knowledge Graph Extraction
LLM Ontology-prompting for Knowledge Graph Extraction
Prompting an LLM with an ontology to drive Knowledge Graph extraction from unstructured documents
I make no apology for saying that a graph is the best organization of structured data. However, the vast majority of data is unstructured text. Therefore, data needs to be transformed from its original format using an Extract-Transform-Load (ETL) or Extract-Load-Transform (ELT) into a Knowledge Graph format. There is no problem when the original format is structured, such as SQL tables, spreadsheets, etc, or at least semi-structured, such as tweets. However, when the source data is unstructured text the task of ETL/ELT to a graph is far more challenging.This article shows how an LLM can be prompted with an unstructured document and asked to extract a graph corresponding to a specific ontology/schema. This is demonstrated with a Kennedy ontology in conjunction with a publicly available description of the Kennedy family tree.
·medium.com·
LLM Ontology-prompting for Knowledge Graph Extraction
Unifying Large Language Models and Knowledge Graphs: A Roadmap
Unifying Large Language Models and Knowledge Graphs: A Roadmap
Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the field of natural language processing and artificial intelligence, due to their emergent ability and generalizability. However, LLMs are black-box models, which often fall short of capturing and accessing factual knowledge. In contrast, Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge. KGs can enhance LLMs by providing external knowledge for inference and interpretability. Meanwhile, KGs are difficult to construct and evolving by nature, which challenges the existing methods in KGs to generate new facts and represent unseen knowledge. Therefore, it is complementary to unify LLMs and KGs together and simultaneously leverage their advantages. In this article, we present a forward-looking roadmap for the unification of LLMs and KGs. Our roadmap consists of three general frameworks, namely, 1) KG-enhanced LLMs, which incorporate KGs during the pre-training and inference phases of LLMs, or for the purpose of enhancing understanding of the knowledge learned by LLMs; 2) LLM-augmented KGs, that leverage LLMs for different KG tasks such as embedding, completion, construction, graph-to-text generation, and question answering; and 3) Synergized LLMs + KGs, in which LLMs and KGs play equal roles and work in a mutually beneficial way to enhance both LLMs and KGs for bidirectional reasoning driven by both data and knowledge. We review and summarize existing efforts within these three frameworks in our roadmap and pinpoint their future research directions.
·arxiv.org·
Unifying Large Language Models and Knowledge Graphs: A Roadmap
Comparing ChatGPT responses using statistical similarity v knowledge representations in the automated text selection process
Comparing ChatGPT responses using statistical similarity v knowledge representations in the automated text selection process
I’ve been comparing ChatGPT responses using statistical similarity v knowledge representations in the automated text selection process. There are token…
comparing ChatGPT responses using statistical similarity v knowledge representations in the automated text selection process
·linkedin.com·
Comparing ChatGPT responses using statistical similarity v knowledge representations in the automated text selection process
Explore OntoGPT for Schema-based Knowledge Extraction
Explore OntoGPT for Schema-based Knowledge Extraction
The OntoGPT framework and SPIRES tool provide a principled approach to extract knowledge from unstructured text for integration into Knowledge Graphs (KGs), using Large Language Models such as GPT. This methodology enables handling complex relationships, ensures logical consistency, and aligns with predefined ontologies for better KG integration.
The OntoGPT framework and SPIRES tool provide a principled approach to extract knowledge from unstructured text for integration into Knowledge Graphs (KGs), using Large Language Models such as GPT. This methodology enables handling complex relationships, ensures logical consistency, and aligns with predefined ontologies for better KG integration
·apex974.com·
Explore OntoGPT for Schema-based Knowledge Extraction
Explaining rules with LLMs
Explaining rules with LLMs
At the Knowledge Graph Conference last week, a number of data managers and researchers from IKEA presented their work on a recommendation…
·medium.com·
Explaining rules with LLMs