Found 216 bookmarks
Custom sorting
Foundations and Frontiers of Graph Learning Theory
Foundations and Frontiers of Graph Learning Theory
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures. Notably, Graph Neural Networks (GNNs), i.e. neural network architectures...
Foundations and Frontiers of Graph Learning Theory
·arxiv.org·
Foundations and Frontiers of Graph Learning Theory
𝘛𝘩𝘦 𝘔𝘪𝘯𝘥𝘧𝘶𝘭-𝘙𝘈𝘎 𝘢𝘱𝘱𝘳𝘰𝘢𝘤𝘩 𝘪𝘴 𝘢 𝘧𝘳𝘢𝘮𝘦𝘸𝘰𝘳𝘬 𝘵𝘢𝘪𝘭𝘰𝘳𝘦𝘥 𝘧𝘰𝘳 𝘪𝘯𝘵𝘦𝘯𝘵-𝘣𝘢𝘴𝘦𝘥 𝘢𝘯𝘥 𝘤𝘰𝘯𝘵𝘦𝘹𝘵𝘶𝘢𝘭𝘭𝘺 𝘢𝘭𝘪𝘨𝘯𝘦𝘥 𝘬𝘯𝘰𝘸𝘭𝘦𝘥𝘨𝘦 𝘳𝘦𝘵𝘳𝘪𝘦𝘷𝘢𝘭.
𝘛𝘩𝘦 𝘔𝘪𝘯𝘥𝘧𝘶𝘭-𝘙𝘈𝘎 𝘢𝘱𝘱𝘳𝘰𝘢𝘤𝘩 𝘪𝘴 𝘢 𝘧𝘳𝘢𝘮𝘦𝘸𝘰𝘳𝘬 𝘵𝘢𝘪𝘭𝘰𝘳𝘦𝘥 𝘧𝘰𝘳 𝘪𝘯𝘵𝘦𝘯𝘵-𝘣𝘢𝘴𝘦𝘥 𝘢𝘯𝘥 𝘤𝘰𝘯𝘵𝘦𝘹𝘵𝘶𝘢𝘭𝘭𝘺 𝘢𝘭𝘪𝘨𝘯𝘦𝘥 𝘬𝘯𝘰𝘸𝘭𝘦𝘥𝘨𝘦 𝘳𝘦𝘵𝘳𝘪𝘦𝘷𝘢𝘭.
𝗥𝗔𝗚 𝗜𝗺𝗽𝗹𝗲𝗺𝗲𝗻𝘁𝗮𝘁𝗶𝗼𝗻𝘀 𝗙𝗮𝗶𝗹 𝗗𝘂𝗲 𝗧𝗼 𝗜𝗻𝘀𝘂𝗳𝗳𝗶𝗰𝗶𝗲𝗻𝘁 𝗙𝗼𝗰𝘂𝘀 𝗢𝗻 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻 𝗜𝗻𝘁𝗲𝗻𝘁 𝘛𝘩𝘦 𝘔𝘪𝘯𝘥𝘧𝘶𝘭-𝘙𝘈𝘎… | 12 comments on LinkedIn
𝘛𝘩𝘦 𝘔𝘪𝘯𝘥𝘧𝘶𝘭-𝘙𝘈𝘎 𝘢𝘱𝘱𝘳𝘰𝘢𝘤𝘩 𝘪𝘴 𝘢 𝘧𝘳𝘢𝘮𝘦𝘸𝘰𝘳𝘬 𝘵𝘢𝘪𝘭𝘰𝘳𝘦𝘥 𝘧𝘰𝘳 𝘪𝘯𝘵𝘦𝘯𝘵-𝘣𝘢𝘴𝘦𝘥 𝘢𝘯𝘥 𝘤𝘰𝘯𝘵𝘦𝘹𝘵𝘶𝘢𝘭𝘭𝘺 𝘢𝘭𝘪𝘨𝘯𝘦𝘥 𝘬𝘯𝘰𝘸𝘭𝘦𝘥𝘨𝘦 𝘳𝘦𝘵𝘳𝘪𝘦𝘷𝘢𝘭.
·linkedin.com·
𝘛𝘩𝘦 𝘔𝘪𝘯𝘥𝘧𝘶𝘭-𝘙𝘈𝘎 𝘢𝘱𝘱𝘳𝘰𝘢𝘤𝘩 𝘪𝘴 𝘢 𝘧𝘳𝘢𝘮𝘦𝘸𝘰𝘳𝘬 𝘵𝘢𝘪𝘭𝘰𝘳𝘦𝘥 𝘧𝘰𝘳 𝘪𝘯𝘵𝘦𝘯𝘵-𝘣𝘢𝘴𝘦𝘥 𝘢𝘯𝘥 𝘤𝘰𝘯𝘵𝘦𝘹𝘵𝘶𝘢𝘭𝘭𝘺 𝘢𝘭𝘪𝘨𝘯𝘦𝘥 𝘬𝘯𝘰𝘸𝘭𝘦𝘥𝘨𝘦 𝘳𝘦𝘵𝘳𝘪𝘦𝘷𝘢𝘭.
An Overview of Knowledge Graph Embeddings
An Overview of Knowledge Graph Embeddings
An Overview of Knowledge Graph Embeddings (KGEs) – Part 1. 🧠🍄 Knowledge Graphs represent real-world facts as structured data. Nodes represent entities or…
An Overview of Knowledge Graph Embeddings
·linkedin.com·
An Overview of Knowledge Graph Embeddings
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
This is something very cool! 3. GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models "GraphReader addresses the…
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
·linkedin.com·
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected - SynaLinks/HybridAGI
·github.com·
GitHub - SynaLinks/HybridAGI: The Programmable Neuro-Symbolic AGI that lets you program its behavior using Graph-based Prompt Programming: for people who want AI to behave as expected
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
Ask your (research) question against 76 Million scientific articles: https://ask.orkg.org Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific…
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
·linkedin.com·
Open Research Knowledge Graph (ORKG) ASK (Assistant for Scientific Knowledge) uses vector hashtag#embeddings to find the most relevant papers and an open-source hashtag#LLM to synthesize the answer for you
(PDF) BIFROST: A Future Graph Database Runtime
(PDF) BIFROST: A Future Graph Database Runtime
PDF | BIFROST is a novel query engine for graph databases that supports high-fidelity data modeling on arbitrary and evolving graph topologies. It... | Find, read and cite all the research you need on ResearchGate
·researchgate.net·
(PDF) BIFROST: A Future Graph Database Runtime
Multimodal Graph Benchmark
Multimodal Graph Benchmark
Associating unstructured data with structured information is crucial for real-world tasks that require relevance search. However, existing graph learning benchmarks often overlook the rich...
·arxiv.org·
Multimodal Graph Benchmark
GraphReader: Long-Context Processing in AI
GraphReader: Long-Context Processing in AI
GraphReader: Long-Context Processing in AI ... As AI systems tackle increasingly complex tasks, the ability to effectively process and reason over long…
GraphReader: Long-Context Processing in AI
·linkedin.com·
GraphReader: Long-Context Processing in AI
How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks
How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks
💡 How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks? 🔎…
·linkedin.com·
How to develop a Graph Foundation Model (GFM) that benefits from large-scale training with better generalization across different domains and tasks
GraphStorm: all-in-one graph machine learning framework for industry applications
GraphStorm: all-in-one graph machine learning framework for industry applications
Graph machine learning (GML) is effective in many business applications. However, making GML easy to use and applicable to industry applications with massive datasets remain challenging. We developed GraphStorm, which provides an end-to-end solution for scalable graph construction, graph model training and inference. GraphStorm has the following desirable properties: (a) Easy to use: it can perform graph construction and model training and inference with just a single command; (b) Expert-friendly: GraphStorm contains many advanced GML modeling techniques to handle complex graph data and improve model performance; (c) Scalable: every component in GraphStorm can operate on graphs with billions of nodes and can scale model training and inference to different hardware without changing any code. GraphStorm has been used and deployed for over a dozen billion-scale industry applications after its release in May 2023. It is open-sourced in Github: https://github.com/awslabs/graphstorm.
·arxiv.org·
GraphStorm: all-in-one graph machine learning framework for industry applications
A repo for ICML graph papers
A repo for ICML graph papers
Following ICLR Graph Papers, I've created a repo for ICML graph papers, grouped by topic. We've got around 250 papers focusing on Graphs and GNNs in ICML'24.…
·linkedin.com·
A repo for ICML graph papers
Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
Introducing Docs2KG: A New Era in Knowledge Graph Construction from Unstructured Data ... Did you know that 80% of enterprise data resides in unstructured… | 13 comments on LinkedIn
Docs2KG: A New Era in Knowledge Graph Construction from Unstructured Data
·linkedin.com·
Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
SPARQL CDTs: Representing and Querying Lists and Maps as RDF Literals
SPARQL CDTs: Representing and Querying Lists and Maps as RDF Literals
This specification defines an approach to represent generic forms of composite values (lists and maps, in particular) as literals in RDF, and corresponding extensions of the SPARQL language. These extensions include an aggregation function to produce such composite values, functions to operate on such composite values in expressions, and a new operator to transform such composite values into their individual components.
·raw.githack.com·
SPARQL CDTs: Representing and Querying Lists and Maps as RDF Literals