Found 183 bookmarks
Custom sorting
Structural analysis and the sum of nodes' betweenness centrality in complex networks
Structural analysis and the sum of nodes' betweenness centrality in complex networks
Structural analysis in network science is finding the information hidden from the topology structure of complex networks. Many methods have already been proposed in the research on the structural analysis of complex networks to find the different structural information of networks. In this work, the sum of nodes' betweenness centrality (SBC) is used as a new structural index to check how the structure of the complex networks changes in the process of the network's growth. We build two four different processes of network growth to check how the structure change will be manifested by the SBC. We find that when the networks are under Barabási-Albert rule, the value of SBC for each network grows like a logarithmic function. However, when the rule that guides the network's growth is the Erdős-Rényi rule, the value of SBC will converge to a fixed value. It means the rules that guide the network's growth can be illustrated by the change of the SBC in the process of the network's growth. In other words, in the structure analysis of complex networks, the sum of nodes' betweenness centrality can be used as an index to check what kinds of rules guide the network's growth.
·arxiv.org·
Structural analysis and the sum of nodes' betweenness centrality in complex networks
Reasoning Algorithmically in Graph Neural Networks
Reasoning Algorithmically in Graph Neural Networks
The development of artificial intelligence systems with advanced reasoning capabilities represents a persistent and long-standing research question. Traditionally, the primary strategy to address this challenge involved the adoption of symbolic approaches, where knowledge was explicitly represented by means of symbols and explicitly programmed rules. However, with the advent of machine learning, there has been a paradigm shift towards systems that can autonomously learn from data, requiring minimal human guidance. In light of this shift, in latest years, there has been increasing interest and efforts at endowing neural networks with the ability to reason, bridging the gap between data-driven learning and logical reasoning. Within this context, Neural Algorithmic Reasoning (NAR) stands out as a promising research field, aiming to integrate the structured and rule-based reasoning of algorithms with the adaptive learning capabilities of neural networks, typically by tasking neural models to mimic classical algorithms. In this dissertation, we provide theoretical and practical contributions to this area of research. We explore the connections between neural networks and tropical algebra, deriving powerful architectures that are aligned with algorithm execution. Furthermore, we discuss and show the ability of such neural reasoners to learn and manipulate complex algorithmic and combinatorial optimization concepts, such as the principle of strong duality. Finally, in our empirical efforts, we validate the real-world utility of NAR networks across different practical scenarios. This includes tasks as diverse as planning problems, large-scale edge classification tasks and the learning of polynomial-time approximate algorithms for NP-hard combinatorial problems. Through this exploration, we aim to showcase the potential integrating algorithmic reasoning in machine learning models.
·arxiv.org·
Reasoning Algorithmically in Graph Neural Networks
LiGNN: Graph Neural Networks at LinkedIn
LiGNN: Graph Neural Networks at LinkedIn
In this paper, we present LiGNN, a deployed large-scale Graph Neural Networks (GNNs) Framework. We share our insight on developing and deployment of GNNs at large scale at LinkedIn. We present a set of algorithmic improvements to the quality of GNN representation learning including temporal graph architectures with long term losses, effective cold start solutions via graph densification, ID embeddings and multi-hop neighbor sampling. We explain how we built and sped up by 7x our large-scale training on LinkedIn graphs with adaptive sampling of neighbors, grouping and slicing of training data batches, specialized shared-memory queue and local gradient optimization. We summarize our deployment lessons and learnings gathered from A/B test experiments. The techniques presented in this work have contributed to an approximate relative improvements of 1% of Job application hearing back rate, 2% Ads CTR lift, 0.5% of Feed engaged daily active users, 0.2% session lift and 0.1% weekly active user lift from people recommendation. We believe that this work can provide practical solutions and insights for engineers who are interested in applying Graph neural networks at large scale.
·arxiv.org·
LiGNN: Graph Neural Networks at LinkedIn
Account credibility inference based on news-sharing networks - EPJ Data Science
Account credibility inference based on news-sharing networks - EPJ Data Science
The spread of misinformation poses a threat to the social media ecosystem. Effective countermeasures to mitigate this threat require that social media platforms be able to accurately detect low-credibility accounts even before the content they share can be classified as misinformation. Here we present methods to infer account credibility from information diffusion patterns, in particular leveraging two networks: the reshare network, capturing an account’s trust in other accounts, and the bipartite account-source network, capturing an account’s trust in media sources. We extend network centrality measures and graph embedding techniques, systematically comparing these algorithms on data from diverse contexts and social media platforms. We demonstrate that both kinds of trust networks provide useful signals for estimating account credibility. Some of the proposed methods yield high accuracy, providing promising solutions to promote the dissemination of reliable information in online communities. Two kinds of homophily emerge from our results: accounts tend to have similar credibility if they reshare each other’s content or share content from similar sources. Our methodology invites further investigation into the relationship between accounts and news sources to better characterize misinformation spreaders.
·epjdatascience.springeropen.com·
Account credibility inference based on news-sharing networks - EPJ Data Science
Graph Foundation Models
Graph Foundation Models
Graph Foundation Model (GFM) is a new trending research topic in the graph domain, aiming to develop a graph model capable of generalizing across different graphs and tasks. However, a versatile GFM has not yet been achieved. The key challenge in building GFM is how to enable positive transfer across graphs with diverse structural patterns. Inspired by the existing foundation models in the CV and NLP domains, we propose a novel perspective for the GFM development by advocating for a "graph vocabulary", in which the basic transferable units underlying graphs encode the invariance on graphs. We ground the graph vocabulary construction from essential aspects including network analysis, theoretical foundations, and stability. Such a vocabulary perspective can potentially advance the future GFM design following the neural scaling laws.
Graph Foundation Model (GFM) is a new trending research topic in the graph domain, aiming to develop a graph model capable of generalizing across different graphs and tasks. However, a versatile GFM has not yet been achieved. The key challenge in building GFM is how to enable positive transfer across graphs with diverse structural patterns. Inspired by the existing foundation models in the CV and NLP domains, we propose a novel perspective for the GFM development by advocating for a "graph vocabulary", in which the basic transferable units underlying graphs encode the invariance on graphs. We ground the graph vocabulary construction from essential aspects including network analysis, theoretical foundations, and stability. Such a vocabulary perspective can potentially advance the future GFM design following the neural scaling laws.
·arxiv.org·
Graph Foundation Models
Towards Learning on Graphs with State Space Models
Towards Learning on Graphs with State Space Models
Our new preprint, "Towards Learning on Graphs with State Space Models" is out!We present Graph Mamba Networks (GMNs), a scalable (linear time) class of Graph Neural Networks that aggregates the hierarchical neighborhoods of nodes using selective state space models.Arxiv:… pic.twitter.com/OjCHMYTvW5— Ali Behrouz (@behrouz_ali) February 14, 2024
Towards Learning on Graphs with State Space Models
·twitter.com·
Towards Learning on Graphs with State Space Models
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation 🔗 As artificial intelligence permeates business… | 29 comments on LinkedIn
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
·linkedin.com·
Knowledge Graphs Achieve Superior Reasoning versus Vector Search alone for Retrieval Augmentation
Learning to Count Isomorphisms with Graph Neural Networks
Learning to Count Isomorphisms with Graph Neural Networks
Subgraph isomorphism counting is an important problem on graphs, as many graph-based tasks exploit recurring subgraph patterns. Classical methods usually boil down to a backtracking framework that needs to navigate a huge search space with prohibitive computational costs. Some recent studies resort to graph neural networks (GNNs) to learn a low-dimensional representation for both the query and input graphs, in order to predict the number of subgraph isomorphisms on the input graph. However, typical GNNs employ a node-centric message passing scheme that receives and aggregates messages on nodes, which is inadequate in complex structure matching for isomorphism counting. Moreover, on an input graph, the space of possible query graphs is enormous, and different parts of the input graph will be triggered to match different queries. Thus, expecting a fixed representation of the input graph to match diversely structured query graphs is unrealistic. In this paper, we propose a novel GNN called Count-GNN for subgraph isomorphism counting, to deal with the above challenges. At the edge level, given that an edge is an atomic unit of encoding graph structures, we propose an edge-centric message passing scheme, where messages on edges are propagated and aggregated based on the edge adjacency to preserve fine-grained structural information. At the graph level, we modulate the input graph representation conditioned on the query, so that the input graph can be adapted to each query individually to improve their matching. Finally, we conduct extensive experiments on a number of benchmark datasets to demonstrate the superior performance of Count-GNN.
·arxiv.org·
Learning to Count Isomorphisms with Graph Neural Networks
Knowledge Engineering Using Large Language Models
Knowledge Engineering Using Large Language Models
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.
·drops.dagstuhl.de·
Knowledge Engineering Using Large Language Models
Common sense knowledge graphs are slightly different from conventional knowledge graphs, but they share the most important thing: they both capture explicit symbolic knowledge
Common sense knowledge graphs are slightly different from conventional knowledge graphs, but they share the most important thing: they both capture explicit symbolic knowledge
I really enjoyed the latest #UnconfuseMe with Bill Gates and Yejin Choi.  Yejin's research is on symbolic knowledge distillation, which means they take large…
Common sense knowledge graphs are slightly different from conventional knowledge graphs, but they share the most important thing: they both capture explicit symbolic knowledge
·linkedin.com·
Common sense knowledge graphs are slightly different from conventional knowledge graphs, but they share the most important thing: they both capture explicit symbolic knowledge
VloGraph: A Virtual Knowledge Graph Framework for Distributed Security Log Analysis
VloGraph: A Virtual Knowledge Graph Framework for Distributed Security Log Analysis
The integration of heterogeneous and weakly linked log data poses a major challenge in many log-analytic applications. Knowledge graphs (KGs) can facilitate such integration by providing a versatile representation that can interlink objects of interest and enrich log events with background knowledge. Furthermore, graph-pattern based query languages, such as SPARQL, can support rich log analyses by leveraging semantic relationships between objects in heterogeneous log streams. Constructing, materializing, and maintaining centralized log knowledge graphs, however, poses significant challenges. To tackle this issue, we propose VloGraph—a distributed and virtualized alternative to centralized log knowledge graph construction. The proposed approach does not involve any a priori parsing, aggregation, and processing of log data, but dynamically constructs a virtual log KG from heterogeneous raw log sources across multiple hosts. To explore the feasibility of this approach, we developed a prototype and demonstrate its applicability to three scenarios. Furthermore, we evaluate the approach in various experimental settings with multiple heterogeneous log sources and machines; the encouraging results from this evaluation suggest that the approach can enable efficient graph-based ad-hoc log analyses in federated settings.
·mdpi.com·
VloGraph: A Virtual Knowledge Graph Framework for Distributed Security Log Analysis
ChatGPT + RDF storytelling
ChatGPT + RDF storytelling
What you can do with gpt-4 is pretty insane. You can ask it to create an RDF description from the first chapter of a story: https://lnkd.in/emuxaX6d (you can… | 19 comments on LinkedIn
·linkedin.com·
ChatGPT + RDF storytelling