Found 230 bookmarks
Custom sorting
Learning to Count Isomorphisms with Graph Neural Networks
Learning to Count Isomorphisms with Graph Neural Networks
Subgraph isomorphism counting is an important problem on graphs, as many graph-based tasks exploit recurring subgraph patterns. Classical methods usually boil down to a backtracking framework that needs to navigate a huge search space with prohibitive computational costs. Some recent studies resort to graph neural networks (GNNs) to learn a low-dimensional representation for both the query and input graphs, in order to predict the number of subgraph isomorphisms on the input graph. However, typical GNNs employ a node-centric message passing scheme that receives and aggregates messages on nodes, which is inadequate in complex structure matching for isomorphism counting. Moreover, on an input graph, the space of possible query graphs is enormous, and different parts of the input graph will be triggered to match different queries. Thus, expecting a fixed representation of the input graph to match diversely structured query graphs is unrealistic. In this paper, we propose a novel GNN called Count-GNN for subgraph isomorphism counting, to deal with the above challenges. At the edge level, given that an edge is an atomic unit of encoding graph structures, we propose an edge-centric message passing scheme, where messages on edges are propagated and aggregated based on the edge adjacency to preserve fine-grained structural information. At the graph level, we modulate the input graph representation conditioned on the query, so that the input graph can be adapted to each query individually to improve their matching. Finally, we conduct extensive experiments on a number of benchmark datasets to demonstrate the superior performance of Count-GNN.
·arxiv.org·
Learning to Count Isomorphisms with Graph Neural Networks
Knowledge Engineering Using Large Language Models
Knowledge Engineering Using Large Language Models
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.
·drops.dagstuhl.de·
Knowledge Engineering Using Large Language Models
Common sense knowledge graphs are slightly different from conventional knowledge graphs, but they share the most important thing: they both capture explicit symbolic knowledge
Common sense knowledge graphs are slightly different from conventional knowledge graphs, but they share the most important thing: they both capture explicit symbolic knowledge
I really enjoyed the latest #UnconfuseMe with Bill Gates and Yejin Choi.  Yejin's research is on symbolic knowledge distillation, which means they take large…
Common sense knowledge graphs are slightly different from conventional knowledge graphs, but they share the most important thing: they both capture explicit symbolic knowledge
·linkedin.com·
Common sense knowledge graphs are slightly different from conventional knowledge graphs, but they share the most important thing: they both capture explicit symbolic knowledge
VloGraph: A Virtual Knowledge Graph Framework for Distributed Security Log Analysis
VloGraph: A Virtual Knowledge Graph Framework for Distributed Security Log Analysis
The integration of heterogeneous and weakly linked log data poses a major challenge in many log-analytic applications. Knowledge graphs (KGs) can facilitate such integration by providing a versatile representation that can interlink objects of interest and enrich log events with background knowledge. Furthermore, graph-pattern based query languages, such as SPARQL, can support rich log analyses by leveraging semantic relationships between objects in heterogeneous log streams. Constructing, materializing, and maintaining centralized log knowledge graphs, however, poses significant challenges. To tackle this issue, we propose VloGraph—a distributed and virtualized alternative to centralized log knowledge graph construction. The proposed approach does not involve any a priori parsing, aggregation, and processing of log data, but dynamically constructs a virtual log KG from heterogeneous raw log sources across multiple hosts. To explore the feasibility of this approach, we developed a prototype and demonstrate its applicability to three scenarios. Furthermore, we evaluate the approach in various experimental settings with multiple heterogeneous log sources and machines; the encouraging results from this evaluation suggest that the approach can enable efficient graph-based ad-hoc log analyses in federated settings.
·mdpi.com·
VloGraph: A Virtual Knowledge Graph Framework for Distributed Security Log Analysis
ChatGPT + RDF storytelling
ChatGPT + RDF storytelling
What you can do with gpt-4 is pretty insane. You can ask it to create an RDF description from the first chapter of a story: https://lnkd.in/emuxaX6d (you can… | 19 comments on LinkedIn
·linkedin.com·
ChatGPT + RDF storytelling
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning
Large language models (LLMs) have demonstrated impressive reasoning abilities in complex tasks. However, they lack up-to-date knowledge and experience hallucinations during reasoning, which can lead to incorrect reasoning processes and diminish their performance and trustworthiness. Knowledge graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. Nevertheless, existing KG-based LLM reasoning methods only treat KGs as factual knowledge bases and overlook the importance of their structural information for reasoning. In this paper, we propose a novel method called reasoning on graphs (RoG) that synergizes LLMs with KGs to enable faithful and interpretable reasoning. Specifically, we present a planning-retrieval-reasoning framework, where RoG first generates relation paths grounded by KGs as faithful plans. These plans are then used to retrieve valid reasoning paths from the KGs for LLMs to conduct faithful reasoning. Furthermore, RoG not only distills knowledge from KGs to improve the reasoning ability of LLMs through training but also allows seamless integration with any arbitrary LLMs during inference. Extensive experiments on two benchmark KGQA datasets demonstrate that RoG achieves state-of-the-art performance on KG reasoning tasks and generates faithful and interpretable reasoning results.
·arxiv.org·
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning
Working on a LangChain template that adds a custom graph conversational memory to the Neo4j Cypher chain
Working on a LangChain template that adds a custom graph conversational memory to the Neo4j Cypher chain
Working on a LangChain template that adds a custom graph conversational memory to the Neo4j Cypher chain, which uses LLMs to generate Cypher statements. This…
Working on a LangChain template that adds a custom graph conversational memory to the Neo4j Cypher chain
·linkedin.com·
Working on a LangChain template that adds a custom graph conversational memory to the Neo4j Cypher chain
Talk like a Graph: Encoding Graphs for Large Language Models
Talk like a Graph: Encoding Graphs for Large Language Models
Graphs are a powerful tool for representing and analyzing complex relationships in real-world applications such as social networks, recommender systems, and computational finance. Reasoning on graphs is essential for drawing inferences about the relationships between entities in a complex system, and to identify hidden patterns and trends. Despite the remarkable progress in automated reasoning with natural text, reasoning on graphs with large language models (LLMs) remains an understudied problem. In this work, we perform the first comprehensive study of encoding graph-structured data as text for consumption by LLMs. We show that LLM performance on graph reasoning tasks varies on three fundamental levels: (1) the graph encoding method, (2) the nature of the graph task itself, and (3) interestingly, the very structure of the graph considered. These novel results provide valuable insight on strategies for encoding graphs as text. Using these insights we illustrate how the correct choice of encoders can boost performance on graph reasoning tasks inside LLMs by 4.8% to 61.8%, depending on the task.
·arxiv.org·
Talk like a Graph: Encoding Graphs for Large Language Models
Constructing knowledge graphs from text using OpenAI functions: Leveraging knowledge graphs to power LangChain Applications
Constructing knowledge graphs from text using OpenAI functions: Leveraging knowledge graphs to power LangChain Applications
Editor's Note: This post was written by Tomaz Bratanic from the Neo4j team. Extracting structured information from unstructured data like text has been around for some time and is nothing new. However, LLMs brought a significant shift to the field of information extraction. If before you needed a team of
·blog.langchain.dev·
Constructing knowledge graphs from text using OpenAI functions: Leveraging knowledge graphs to power LangChain Applications
Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models
Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models
🚀 Exciting News: Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models! 📊🧠 We are thrilled to unveil our… | 42 comments on LinkedIn
Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models
·linkedin.com·
Introducing "Reasoning on Graphs (RoG)" - Unlocking Next-Level Reasoning for Large Language Models